1. [1] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments," International Journal of Robotics Research, vol. 31, pp. 647-663, April 2012. [
DOI:10.1177/0278364911434148]
2. [2] K. Khoshelham ,and S. Elberink, "Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications," Sensors, vol. 12, pp. 1437-1454, February 2012. [
DOI:10.3390/s120201437] [
PMID] [
PMCID]
3. [3] Y. Wang, F. Zhong, Q. Peng, and X. Qin, "Depth map enhancement based on color and depth consistency," The Visual Computer, vol. 30, pp. 1157-1168, October 2014. [
DOI:10.1007/s00371-013-0896-z]
4. [4] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald, "Robust real-time visual odometry for dense RGB-D mapping," in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, pp. 5724-5731. [
DOI:10.1109/ICRA.2013.6631400]
5. [5] M. Paknezhad ,and M. Rezaeian, "Indoor Planar Modeling Using RGB-D Images," Signal and Data Processing, vol. 14, pp. 143-160, 2017. [
DOI:10.29252/jsdp.14.3.143]
6. [6] J. Smisek, M. Jancosek, and T. Pajdla, "3D with Kinect," in IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 2011, pp. 1154-1160. [
DOI:10.1109/ICCVW.2011.6130380]
7. [7] C. Mutto, P. Zanuttigh, and G. Cortelazzo, "Microsoft Kinect™ Range Camera," in Time-of-Flight Cameras and Microsoft Kinect™, C. Mutto, P. Zanuttigh, and G. Cortelazzo, Eds., ed: Springer US, 2012, pp. 33-47. [
DOI:10.1007/978-1-4614-3807-6_3]
8. [8] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, and S. Li, "Kinect-like depth data compression," IEEE Transactions on Multimedia, vol. 15, pp. 1340 - 1352, October 2013. [
DOI:10.1109/TMM.2013.2247584]
9. [9] P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Müller, P. de With, et al., "The effects of multiview depth video compression on multiview rendering," Signal Processing: Image Communi-cation, vol. 24, pp. 73-88, January 2009. [
DOI:10.1016/j.image.2008.10.010]
10. [10] K. Muller, P. Merkle, and T. Wiegand, "3-D Video Representation Using Depth Maps," Proceedings of the IEEE, vol. 99, pp. 643-656, April 2010. [
DOI:10.1109/JPROC.2010.2091090]
11. [11] J. Ruiz-Hidalgo, J. Morros, P. Aflaki, F. Calderero, and F. Marqués, "Multiview depth coding based on combined color/depth segmentation," Journal of Visual Communication and Image Representation, vol. 23, pp. 42-52, January 2012. [
DOI:10.1016/j.jvcir.2011.08.001]
12. [12] I. Daribo, H. Saito, R. Furukawa, S. Hiura, and N. Asada, "Effects of Wavelet-Based Depth Video Compression," in 3D-TV System with Depth-Image-Based Rendering, C. Zhu, Y. Zhao, L. Yu, and M. Tanimoto, Eds., ed: Springer New York, 2013, pp. 277-298. [
DOI:10.1007/978-1-4419-9964-1_10]
13. [13] M. Maitre ,and M. Do, "Depth and depth-color coding using shape-adaptive wavelets," Journal of Visual Communication and Image Represen-tation, vol. 21, pp. 513-522, July-August 2010. [
DOI:10.1016/j.jvcir.2010.03.005]
14. [14] D. Donoho, "Wedgelets: nearly minimax esti-mation of edges," Annals of Statistics, vol. 27, pp. 859-897, April 1999. [
DOI:10.1214/aos/1018031261]
15. [15] A. Lisowska, Geometrical Multiresolution Adaptive Transforms - Theory and Applications, 1st ed.: Springer International Publishing, 2014. [
DOI:10.1007/978-3-319-05011-9]
16. [16] J. Romberg, M. Wakin, and R. Baraniuk, "Multiscale wedgelet image analysis: fast decompositions and modeling," in International Conference on Image Processing, Rochester, New York, 2002, pp. 585-588.
17. [17] H. Bagherzadeh, A. Harati, Z. Amiri, and R. KamyabiGol, "Video Denoising Using block Shearlet Transform," Signal and Data Processing, vol. 15, pp. 17-30, 2018. [
DOI:10.29252/jsdp.15.2.17]
18. [18] R. Willett and R. Nowak, "Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging," IEEE Transactions on Medical Imaging, vol. 22, pp. 332-350, March 2003. [
DOI:10.1109/TMI.2003.809622] [
PMID]
19. [19] M. Dou, L. Guan, J. Frahm, and H. Fuchs, "Exploring High-Level Plane Primitives for Indoor 3D Reconstruction with a Hand-held RGB-D Camera," in Computer Vision - ACCV 2012 Workshops. vol. 7729, J.-I. Park and J. Kim, Eds., ed: Springer Berlin Heidelberg, 2013, pp. 94-108. [
DOI:10.1007/978-3-642-37484-5_9]
20. [20] R. Kaushik and J. Xiao, "Accelerated patch-based planar clustering of noisy range images in indoor environments for robot mapping," Robotics and Autonomous Systems, vol. 60, pp. 584-598, April 2012. [
DOI:10.1016/j.robot.2011.12.001]
21. [21] M. Brown, D. Burschka, and G. Hager, "Advances in computational stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 993-1008, August 2003. [
DOI:10.1109/TPAMI.2003.1217603]
22. [22] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," International Journal of Computer Vision, vol. 47, pp. 7-42, April-June 2002.
23. [23] N. Thakoor, J. Sungying, and G. Jean, "Real-time Planar Surface Segmentation in Disparity Space," in IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007, pp. 1-8. [
DOI:10.1109/CVPR.2007.383414]
24. [24] D. Sebai, F. Chaieb, K. Mammou, and F. Ghorbel, "Piece-wise linear function estimation for platelet-based depth maps coding using edge detection," in Proceedings of SPIE 8290, Three-Dimensional Image Processing (3DIP) and Applications II, Burlingame, California, United States, 2012, p. 82901C. [
DOI:10.1117/12.909286]
25. [25] Z. Yu, W. Han, and Z. Jiying, "Depth map compression based on platelet coding and quadratic curve fitting," in IEEE 27th Canadian Conference on Electrical and Computer Engi-neering (CCECE), Halifax, Nova Scotia, Canada, 2014, pp. 1-4.
26. [26] I. Daribo, C. Tillier, and B. Pesquet-Popescu, "Adaptive wavelet coding of the depth map for stereoscopic view synthesis," in IEEE 10th Workshop on Multimedia Signal Processing, Cairns, Queensland, Australia, 2008, pp. 413-417. [
DOI:10.1109/MMSP.2008.4665114]
27. [27] O. Kwan-Jung, Y. Sehoon, A. Vetro, and H. Yo-Sung, "Depth Reconstruction Filter and Down/Up Sampling for Depth Coding in 3-D Video," IEEE Signal Processing Letters, vol. 16, pp. 747-750, September 2009. [
DOI:10.1109/LSP.2009.2024112]
28. [28] O. Kwan-Jung, A. Vetro, and H. Yo-Sung, "Depth Coding Using a Boundary Reconstruction Filter for 3-D Video Systems," IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, pp. 350-359, March 2011. [
DOI:10.1109/TCSVT.2011.2116590]
29. [29] K. Min-Koo and H. Yo-Sung, "Depth Video Coding Using Adaptive Geometry Based Intra Prediction for 3-D Video Systems," IEEE Transactions on Multimedia, vol. 14, pp. 121-128, February 2012. [
DOI:10.1109/TMM.2011.2169238]
30. [30] F. Pece, J. Kautz, and T. Weyrich, "Three Depth-Camera Technologies Compared," in 1st BEAMING Workshop, Barcelona, Spain, 2011, pp. 1-4.
31. [31] S. Mehrotra, Z. Zhengyou, C. Qin, Z. Cha, and P. Chou, "Low-complexity, near-lossless coding of depth maps from kinect-like depth cameras," in IEEE 13th International Workshop on Multimedia Signal Processing (MMSP), Saint-Malo, France, 2011, pp. 1-6. [
DOI:10.1109/MMSP.2011.6093803]
32. [32] D. Sandberg, P. Forssen, and J. Ogniewski, "Model-Based Video Coding Using Colour and Depth Cameras," in International Conference on Digital Image Computing Techniques and Applications (DICTA), Noosa, QLD, Australia, 2011, pp. 158-163. [
DOI:10.1109/DICTA.2011.33]
33. [33] D. Donoho and X. Huo, "Beamlets and Multiscale Image Analysis," in Multiscale and Multi-resolution Methods. vol. 20, T. Barth, T. Chan, and R. Haimes, Eds., ed: Springer Berlin Heidelberg, 2002, pp. 149-196. [
DOI:10.1007/978-3-642-56205-1_3]
34. [34] A. Lisowska, "Second Order Wedgelets in Image Coding," in The International Conference on Computer as a Tool, Warsaw, Poland, 2007, pp. 237-244. [
DOI:10.1109/EURCON.2007.4400239]
35. [35] A. Lisowska, "Moments-Based Fast Wedgelet Transform," Journal of Mathematical Imaging and Vision, vol. 39, pp. 180-192, February 2011. [
DOI:10.1007/s10851-010-0233-3]
36. [36] A. Lisowska, "Smoothlet Transform: Theory and Applications," in Advances in Imaging and Electron Physics. vol. 178, W. H. Peter, Ed., ed: Elsevier, 2013, pp. 97-145. [
DOI:10.1016/B978-0-12-407701-0.00002-9]
37. [37] F. Friedrich, L. Demaret, H. Führ, and K. Wicker, "Efficient Moment Computation over Polygonal Domains with an Application to Rapid Wedgelet Approximation," SIAM Journal on Scientific Computing, vol. 29, pp. 842-863, April 2007. [
DOI:10.1137/050646597]
38. [38] V. Kiani, A. Harati, and A. Vahedian, "Iterative Wedgelet Transform: An efficient algorithm for computing wedgelet representation and approximation of images," Journal of Visual Communication and Image Representation, vol. 34, pp. 65-77, January 2016. [
DOI:10.1016/j.jvcir.2015.10.009]
39. [39] V. Kiani, A. Harati, and A. Vahedian, "A relaxation approach to computation of second-order wedgelet transform with application to image compression," Signal Processing: Image Communication, vol. 41, pp. 115-127, February 2016. [
DOI:10.1016/j.image.2015.12.005]
40. [40] R. Shukla, P. Dragotti, M. Do, and M. Vetterli, "Rate-distortion optimized tree-structured com-pression algorithms for piecewise polynomial images," IEEE Transactions on Image Pro-cessing, vol. 14, pp. 343-359, March 2005. [
DOI:10.1109/TIP.2004.840710] [
PMID]
41. [41] A. Handa, T. Whelan, J. McDonald, and A. Davison, "A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM," in IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 1524-1531. [
DOI:10.1109/ICRA.2014.6907054]
42. [42] K. Lai, L. Bo, and D. Fox, "Unsupervised feature learning for 3D scene labeling," in IEEE Inter-national Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 3050-3057. [
DOI:10.1109/ICRA.2014.6907298]
43. [43] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004. [
DOI:10.1109/TIP.2003.819861] [
PMID]