دوره 15، شماره 3 - ( 9-1397 )                   جلد 15 شماره 3 صفحات 75-88 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Feizi A. Application of Sparse Representation and Camera Collaboration in Visual Surveillance Systems. JSDP. 2018; 15 (3) :75-88
URL: http://jsdp.rcisp.ac.ir/article-1-559-fa.html
فیضی اصغر. استفاده از نمایش پراکنده و همکاری دوربین‌ها برای کاربردهای نظارت بینایی. پردازش علائم و داده‌ها. 1397; 15 (3) :75-88

URL: http://jsdp.rcisp.ac.ir/article-1-559-fa.html


دانشگاه دامغان
چکیده:   (231 مشاهده)

مسأله آشکارسازی رفتارهای غیرمعمول براساس ویدئو، در‌‌حقیقت شناسایی الگوها در داده‌هایی است که با رفتارهای مورد انتظار مطابقت ندارند. درهمین‌اواخر برای خوشه­بندی رفتارها و آشکارسازی رفتارهای غیرمعمول، از روش‌های بازسازی پراکنده استفاده می‌شود. در این مقاله از نمایش پراکنده ویژگی‌ها و همکاری دوربین‌ها، برای شناسایی رفتارها و آشکارسازی رفتارهای غیرمعمول استفاده می‌شود. ابتدا برای هر محل در فریم تصویر، یک ویژگی که دارای استقلال هندسی است، استخراج می‌شود؛ سپس برای یک دوربین، ماتریس دیکشنری A محاسبه و به‌عنوان یک مجموعه از مدل رفتاری در نظر گرفته می‌شود. حال، تحت عنوان مسأله همکاری دوربین‌ها، ماتریس دیکشنری یادگرفته‌شده به دوربین دیگر منتقل می‌شود و در دوربین جدید برای آشکارسازی غیرمعمول‌ها مورد استفاده قرار می‌گیرد. برای یادگیری ماتریس دیکشنری، یک روش سلسله‌مراتبی با استفاده از خوشه­بندی طیفی پیشنهاد و یک معیار اندازه‌گیری با استفاده از نمایش پراکنده برای آشکارسازی رفتارهای غیرمعمول ارائه می‌شود. نتایج آزمایشی، مؤثر‌بودن ره‌یافت پیشنهادی در استفاده از همکاری دوربین­ها برای آشکارسازی رفتارهای غیرمعمول را نشان  می­دهد.

متن کامل [PDF 5588 kb]   (68 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: ۱۳۹۶/۵/۶ | پذیرش: ۱۳۹۷/۵/۱۵ | انتشار: ۱۳۹۷/۹/۲۸ | انتشار الکترونیک: ۱۳۹۷/۹/۲۸

فهرست منابع
1. [1] C. Chi-Hung, H. Jun-Wei, T. Luo-Wei, C. Sin-Yu, and F. Kuo-Chin, "Carried object detection using ratio histogram and its application to suspicious event analysis," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 6, pp. 911–916, 2009. [DOI:10.1109/TCSVT.2009.2017415]
2. [2] T. Xiang and S. Gong, "Video behaviour profiling for anomaly detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 893–908, 2008. [DOI:10.1109/TPAMI.2007.70731] [PMID]
3. [3] D. Xu, R. Song, X. Wu, N. Li, W. Feng, and H. Qian, "Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts," Neurocomputing, vol. 143, pp. 144–152, 2014. [DOI:10.1016/j.neucom.2014.06.011]
4. [4] M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette, "Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes," Computer Vision and Image Understanding, no. February, Elsevier, pp. 0–1, 2018.
5. [5] Y. Yuan, D. Wang, and Q. Wang, "Anomaly Dete-ction in Traffic Scenes via Spatial-Aware Motion Reconstruction," IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1198–1209, 2017. [DOI:10.1109/TITS.2016.2601655]
6. [6] X. Gu, J. Cui, and Q. Zhu, "Abnormal crowd behavior detection by using the particle entropy," Optik (Stuttg)., vol. 125, no. 14, pp. 3428–3433, 2014. [DOI:10.1016/j.ijleo.2014.01.041]
7. [7] Y. Zhang, H. Lu, L. Zhang, and X. Ruan, "Combin-ing motion and appearance cues for anomaly detection," Pattern Recognit., vol. 51, pp. 443–452, 2016. [DOI:10.1016/j.patcog.2015.09.005]
8. [8] B. Antić and B. Ommer, "Video parsing for ab-normality detection," Proc. IEEE Int. Conf. Com-put. Vis., pp. 2415–2422, 2011.
9. [9] S. Zhu, J. Hu, and Z. Shi, "Local abnormal behav-ior detection based on optical flow and spatio-temporal gradient," Multimed. Tools Appl., vol. 75, no. 15, pp. 9445–9459, 2016. [DOI:10.1007/s11042-015-3122-3]
10. [10] J. Kim and K. Grauman, "Observe locally, infer globally: a space–time mrf for detecting ab-normal activities with incremental updates," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, no. June.
11. [11] A. L. Hou, J. L. Guo, C. J. Wang, L. Wu, and F. Li, "Abnormal behavior recognition based on trajectory feature and regional optical flow," in Proceedings - 2013 7th International Conference on Image and Graphics, ICIG 2013, 2013, pp. 643–649. [DOI:10.1109/ICIG.2013.134]
12. [12] V. Saligrama, J. Konrad, and P. M. Jodoin, "Vi-deo anomaly identification," IEEE Signal Pro-cess. Mag., vol. 27, no. 5, pp. 18–33, 2010. [DOI:10.1109/MSP.2010.937393]
13. [13] J. A. Rodríguez-Serrano and S. Singh, "Trajec-tory clustering in CCTV traffic videos using probability product kernels with hidden Markov models," Pattern Anal. Appl., vol. 15, no. 4, pp. 415–426, 2012. [DOI:10.1007/s10044-012-0269-7]
14. [14] S. Amraee, A. Vafaei, K. Jamshidi, and P. Adibi, "Anomaly detection and localization in crowded scenes using connected component analysis," 2017.
15. [15] X. Wang, X. Ma, and E. Grimson, "Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Mod-els.pdf," vol. 31, no. 3, pp. 1–35, 2007.
16. [16] S. Li, C. Liu, and Y. Yang, "Anomaly Detection Based on Maximum a Posteriori," Pattern Reco-gnit. Lett., vol. 0, pp. 1–7, 2017. [DOI:10.1016/j.patcog.2016.09.013]
17. [17] C. Simon, J. Meessen, and C. De Vleeschouwer, "Visual event recognition using decision trees," Multimed. Tools Appl., vol. 50, no. 1, pp. 95–121, 2010. [DOI:10.1007/s11042-009-0364-y]
18. [18] S. Amraee, A. Vafaei, K. Jamshidi, and P. Adibi, "Abnormal event detection in crowded scenes us-ing one-class SVM," Signal, Image Video Pro-cess., 2018. [DOI:10.1007/s11760-018-1267-z]
19. [19] B. D. Devarajan, Z. Cheng, and R. J. Radke, "Camera Networks," vol. 96, no. 10, pp. 1625–1639, 2008.
20. [20] M. Piccardi, "Background subtraction techn-i-ques: a review," Vision Res., pp. 3099–3104, 2004.
21. [21] H. Cheng, Sparse Representation , Modeling and Learning in Visual Recognition. .
22. [22] X. Mo, V. Monga, R. Bala, and Z. Fan, "A joint sparsity model for video anomaly detection," Conf. Rec. - Asilomar Conf. Signals, Syst. Com-put., pp. 1969–1973, 2012. [DOI:10.1109/ACSSC.2012.6489384]
23. [23] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009. [DOI:10.1109/TPAMI.2008.79] [PMID]
24. [24] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, "Toward a practical face re-cognition system: Robust alignment and illu-mination by sparse representation," IEEE Trans. Pa-ttern Anal. Mach. Intell., vol. 34, no. 2, pp. 372–386, 2012. [DOI:10.1109/TPAMI.2011.112] [PMID]
25. [25] M. Planck and U. Von Luxburg, "A Tutorial on Spectral Clustering A Tutorial on Spectral Clus-tering," Stat. Comput., vol. 17, no. March, pp. 395–416, 2006.
26. [26] L. Zelnik and P. Perona, "Self-Yuning Spectral Clustering," vol. 17, no. 4.
27. [27] R. Mehran, a. Oyama, and M. Shah, "Abnormal crowd behavior detection using social force model," 2009 IEEE Conf. Comput. Vis. Pattern Recognit., no. 2, pp. 935–942, 2009.
28. [28] "PETS2006 dataset. Available: http://www.cv-g.rdg.ac.uk/PETS2006/data.html."

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.