Volume 15, Issue 1 (6-2018)                   JSDP 2018, 15(1): 3-28 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shayegh F, Ghasemi F, Amirfatahi R, Sadri S, Ansarifard K. Online Single-Channel Seizure Prediction, Based on Seizure Genesis Model of Depth-EEG Signals Using Extended Kalman Filter. JSDP. 2018; 15 (1) :3-28
URL: http://jsdp.rcisp.ac.ir/article-1-509-en.html
PhD Esfahan university of medical science
Abstract:   (49 Views)

Many efforts have been done to predict epileptic seizures so far. It seems that some kind of abnormal synchronization among brain areas is responsible for the seizure generation. This is because the synchronization-based algorithms have been the most important methods so far. However, the huge number of EEG channels, which is the main requirement of these methods, make them very difficult to use in practice. In this paper, in order to improve the prediction algorithm, the factor underlying the abnormal brain synchronization, i.e., the imbalance of excitation/inhibition neuronal activity, is taken into account. Accordingly, to extract these hidden excitatory/inhibitory parameters from depth-EEG signals, a realistic physiological model is used. The Output of this model (as a function of model parameters) imitate the depth-EEG signals. On the other hand, based on this model, one can estimate the model parameters behind every real depth-EEG signal, using an identification process. In order to be able to track the temporal variation of the parameter sequences, the model parameters, themselvese, are supposed to behave as a stochastic process. This stochastic process, described by a Hidden Markov Model formerly (HMM) and worked by the current researchists, is now modified to a State Space Model (SSM). The advantage of SSM is that it can be described by some differential equations. By adding these SSM equations to the differential equations producing depth-EEG signals, Kalman filter can be used to identify the parameter sequences underlying signals. Then, these extracted inhibition/excitation sequences can be applied in order to predict seizures. By using the four model parametetrs relevant to excitation/inhibition neuronal activity, extracted from just one channel of depth-EEG signals, the proposed method reached the 100% sensitivity, and 0.2 FP/h, which is very similar to the multi-channel algorithms. The algorithm can be done in an online manner.
 

Full-Text [PDF 9190 kb]   (28 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2016/04/30 | Accepted: 2017/10/28 | Published: 2018/06/13 | ePublished: 2018/06/13

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author


© 2015 All Rights Reserved | Signal and Data Processing