دوره 14، شماره 3 - ( 9-1396 )                   جلد 14 شماره 3 صفحات 143-160 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Paknezhad M, Rezaeian M. Indoor Planar Modeling Using RGB-D Images. JSDP. 2017; 14 (3) :143-160
URL: http://jsdp.rcisp.ac.ir/article-1-490-fa.html
پاک نژاد مقداد، رضائیان مهدی. مدل‌سازی صفحه‌ای محیط‌های داخلی با استفاده از تصاویر RGB-D. پردازش علائم و داده‌ها. 1396; 14 (3) :143-160

URL: http://jsdp.rcisp.ac.ir/article-1-490-fa.html


دانشگاه یزد
چکیده:   (887 مشاهده)

در رباتیک و به‌طور خاص برای ساخت نقشه‌های سه‌بعدی از محیط‌های داخلی، تفسیر تصاویر RGB-D به مسئله مهمی تبدیل شده است. در این مقاله جهت کاهش حجم داده‌ها و تسریع ساخت نقشه سه‌بعدی، تصاویر عمق به ابرهای نقطه‌ای تبدیل و سپس آن‌ها بر مبنای صفحات تصویر قطعه‌بندی می‌شوند. پس از برازش مدل صفحه‌‌ای متناظر با هر قطعه، تعداد مشخصی از نقاط روی صفحات تولید و سپس با اجرای الگوریتم تکراری نزدیک‌ترین نقطه (ICP) روی این نقاط، ماتریس‌های دوران و انتقال بین هر دو فریم تخمین زده شده و تصویر تثبیت می‌شود. نتایج نشان می‌دهد که روش ارائه‌شده، به‌طور متوسط سرعت را در صورت استفاده از فریم‌های متوالی 55 درصد و در صورت استفاده از فریم‌های غیرمتوالی 91 درصد افزایش می‌دهد. روش پیشنهادی می‌تواند منجر به کاهش حجم محاسبات در مسئله مکان‌یابی و تهیه نقشه همزمان (SLAM)  شود.

متن کامل [PDF 18951 kb]   (231 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: مقالات پردازش تصویر
دریافت: ۱۳۹۴/۱۱/۲۷ | پذیرش: ۱۳۹۵/۱۲/۱۵ | انتشار: ۱۳۹۶/۱۱/۹ | انتشار الکترونیک: ۱۳۹۶/۱۱/۹

فهرست منابع
1. [1] S. Thrun, "Robotic mapping: a survey," in Exploring artificial intelligence in the new millennium, L. Gerhard and N. Bernhard, Eds., ed: Morgan Kaufmann Publishers Inc., 2003, pp. 1-35.
2. [2] V. HÖGMAN, "Building a 3D map from RGB-D sensors," Master dissertation, Dept. Computer Science, Computer Vision and Active Perception Laboratory Royal Institute of Technology (KTH), Stockholm, Sweden, 2011.
3. [3] P. Vieira and R. Ventura, "Interactive mapping in 3D using RGB-D data," IEEE International Symposium on Safety Security and Rescue Robotics (SSRR), 2012, pp. 1-6. [DOI:10.1109/SSRR.2012.6523879]
4. [4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments," in Experimental Robotics, ed: Springer Berlin Heidelberg, 2010, pp. 477-491. [PMID]
5. [5] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from RGBD images," in Proc. 12th European conference on Computer Vision - Volume Part V, Florence, Italy, 2012. [DOI:10.1007/978-3-642-33715-4_54]
6. [6] C. Couprie, C. e. Farabet, L. Najman, and Y. LeCun, "Indoor Semantic Segmentation using depth information,", International Conference on Learning Representations (ICLR2013), 2013.
7. [7] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, pp. 239-256, 1992. [DOI:10.1109/34.121791]
8. [8] A. Nüchter, 3D Robotic Mapping: Springer-Verlag Berlin Heidelberg, 2009.
9. [9] N. V. D. Hau, N. D. Thang, T. T. L. Anh, and T. C. Hung, "Combined Plane and Point Registration of Sequential Depth Images for Indoor Localization " in Third International Conference on Advances in Computing, Electronics and Electrical Technology - CEET 2015, 2015, pp. 136-140.
10. [10] L. Tae-kyeong, L. Seungwook, L. Seongsoo, A. Shounan, and O. Se-young, "Indoor mapping using planes extracted from noisy RGB-D sensors," in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 1727-1733.
11. [11] W. Caihua, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto, "Comparison of local plane fitting methods for range data," in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, 2001, pp. I-663-I-669 vol.1.
12. [12] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, "Fast plane detection and polygonalization in noisy 3D range images," in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 3378-3383. [DOI:10.1109/IROS.2008.4650729]
13. [13] C. Erdogan, M. Paluri, and F. Dellaert, "Planar Segmentation of RGBD Images Using Fast Linear Fitting and Markov Chain Monte Carlo," in Proc. Ninth Conference on Computer and Robot Vision, 2012. [DOI:10.1109/CRV.2012.12]
14. [14] J. Strom, A. Richardson, and E. Olson, "Graph-based segmentation for colored 3D laser point clouds," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 2131-2136. [DOI:10.1109/IROS.2010.5650459]
15. [15] C. J. Taylor and A. Cowley, "Fast scene analysis using image and range data," in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 3562-3567. [DOI:10.1109/ICRA.2011.5980326]
16. [16] ق. حسین پور، "یک الگوریتم ردیابی خودرو مبتنی بر ویژگی با استفاده از گروه بندی سلسله مراتبی ادغام و تقسیم،" مجله پردازش علائم و داده ها، 1394.
17. [17] D. Girardeau-Montaut, "Cloudcompare, a 3D point cloud and mesh processing free software," http://www.danielgm.net/cc (accessed 08.02.2016) 2011.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها می باشد.