Volume 13, Issue 3 (12-2016)                   JSDP 2016, 13(3): 17-34 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi Bajestani G, Monzavi A, Hashemi Golpaygani S M R. Precisely chaotic models survey with Qualitative Bifurcation Diagram. JSDP. 2016; 13 (3) :17-34
URL: http://jsdp.rcisp.ac.ir/article-1-309-en.html
Abstract:   (6463 Views)

The most important method  for behavior recognition of recurrent maps is to plot bifurcation diagram. In conventional method used for plotting bifurcation diagram,  a couple of time series for different values of model parameter have been generated and these points have been plotted with due respect to it after transient state. It does not have enough accuracy necessary for period detection and essential for discrimination between long periodic behaviors from chaotic behaviors; on the other hand because of being 2-dimensinal, it will not be possible to investigate the effect if the initial condition is in the basin of attraction.
In this research, a new bifurcation diagram is presented which is called: Qualitative Bifurcation Diagram (QBD). QBD provides accurate determination of periodicity. Results of our algorithm implementation on logistic map, represents its ability on determining long periods and period windows. Bifurcation diagram of logistic map does not obey mosaic tiling patterns (patterns that are created by arrangement not interaction) as a disciplinein addition to having the dynamic order. Some benefits of QBD are: long period discrimination, period window detection, computation time reduction, period presentation instead of amplitude show. In the  following we have an analytical survey to Lyapunov exponent – as a usual measurement tool for chaotic behavior – and important notes are expressed. Finally, Recurrent Quantification Analysis (RQA) and QBD are compared.  

Full-Text [PDF 3921 kb]   (1484 Downloads)    
Type of Study: بنیادی | Subject: Paper
Received: 2015/01/3 | Accepted: 2016/09/7 | Published: 2017/04/23 | ePublished: 2017/04/23

1. [1] D. Gulick, Encounters with chaos: McGraw-Hill, 1992. [PMCID]
2. [2] M. Ausloos, and M. Dirickx, The logistic map and the route to chaos: from the beginnings to modern applications: Springer Science & Business Media, 2006. [DOI:10.1007/3-540-32023-7]
3. [3] B. Ibarz, J. M. Casado, and M. A. Sanjuán, "Map-based models in neuronal dynamics," Physics Reports, vol. 501, no. 1, pp. 1-74, 2011. [DOI:10.1016/j.physrep.2010.12.003]
4. [4] E. M. Izhikevich, "Which model to use for cortical spiking neurons?," IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063-1070, 2004. [DOI:10.1109/TNN.2004.832719] [PMID]
5. [5] M. Courbage, and V. I. Nekorkin, "Map based models in neurodynamics," International Journal of Bifurcation and Chaos, vol. 20, no. 06, pp. 1631-1651, 2010. [DOI:10.1142/S0218127410026733]
6. [6] F. Mukhamedov, and W. N. F. A. W. Rozali, "On a p-adic cubic generalized logistic dynamical System." p. 012012.
7. [7] N. K. Pareek, V. Patidar, and K. K. Sud, "Image encryption using chaotic logistic map," Image and vision computing, vol. 24, no. 9, pp. 926-934, 2006. [DOI:10.1016/j.imavis.2006.02.021]
8. [8] G. S. Bajestani, A. Sheikhani, S. M. R. H. Golpayegani, F. Ashrafzadeh, and P. Hebrani, "A New Approach for Solving Nonlinear Differential Equations with Poincare Map and Poincare Section," Majlesi Journal of Electrical Engineering, vol. 10, no. 3, pp. 33, 2016.
9. [9] M. Girardi-Schappo, M. Tragtenberg, and O. Kinouchi, "A brief history of excitable map-based neurons and neural networks," Journal of neuroscience methods, vol. 220, no. 2, pp. 116-130, 2013. [DOI:10.1016/j.jneumeth.2013.07.014] [PMID]
10. [10] G. Sadeghi Bajestani, A. Sheikhani, S. M. R. Hashemi Golpayegani, F. Ashrafza-deh, and P. Hebrani, "A systematic review, on the application of quantitative EEG for characterizing autistic brain," Modern Rehabilitation, vol. 9, no. 6, pp. 10-28, 2016.
11. [11] A. L. Lloyd, "The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics," Journal of Theoretical Biology, vol. 173, no. 3, pp. 217-230, 1995. [DOI:10.1006/jtbi.1995.0058]
12. [12] M. J. Feigenbaum, "Quantitative universality for a class of nonlinear transformations," Journal of statistical physics, vol. 19, no. 1, pp. 25-52, 1978. [DOI:10.1007/BF01020332]
13. [13] D. S. M. R. H. Golpaygani, Chaos and its application Amirkabir University of Technology, 2015.
14. [14] T.-Y. Li, and J. A. Yorke, "Period three implies chaos," The American Mathematical Monthly, vol. 82, no. 10, pp. 985-992, 1975. [DOI:10.2307/2318254]
15. [15] R. C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers: Oxford University Press on Demand, 2000.
16. [16] J. A. Gallas, and H. E. Nusse, "Periodicity versus chaos in the dynamics of cobweb models," Journal of Economic Behavior & Organization, vol. 29, no. 3, pp. 447-464, 1996. [DOI:10.1016/0167-2681(95)00082-8]
17. [17] A. Chen, J. Lu, J. Lü, and S. Yu, "Generating hyperchaotic Lü attractor via state feedback control," Physica A: Statistical Mechanics and its Applications, vol. 364, pp. 103-110, 2006. [DOI:10.1016/j.physa.2005.09.039]
18. [18] M. Özer, A. Čenys, Y. Polatoglu, G. Hacibekiroglu, E. Akat, A. Valaristos, and A. Anagnostopoulos, "Bifurcations of Fibonacci generating functions," Chaos, Solitons & Fractals, vol. 33, no. 4, pp. 1240-1247, 2007. [DOI:10.1016/j.chaos.2006.01.095]
19. [19] S. Schinkel, N. Marwan, and J. Kurths, "Brain signal analysis based on recurrences," Journal of Physiology-Paris, vol. 103, no. 6, pp. 315-323, 2009. [DOI:10.1016/j.jphysparis.2009.05.007] [PMID]
20. [20] H. Poincaré, "Sur le probleme des trois corps et les équations de la dynamique," Acta mathematica, vol. 13, no. 1, pp. A3-A270, 1890.
21. [21] G. Sadeghi Bajestani, A. Sheikhani, M. R. Hashemi Golpayegani, F. Ashrafzadeh, and P. Hebrani, "A Hierarchical Model for Autism Spectrum Disorder (HMASD)," Razavi Int J Med, vol. 4, no. 3, pp. e39107, 2016. [DOI:10.17795/rijm39107]
22. [22] G. Sadeghi Bajestani, M. R. Hashemi Golpayegani, A. Sheikhani, and F. Ashrafzadeh, "Poincaré Section analysis of the electroencephalogram in Autism Spectrum Disorder using Complement Plots," Kybernetes, vol. 46, no. 2, 2017. [DOI:10.1108/K-12-2015-0306]
23. [23] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, "Recurrence plots of dynamical systems," EPL (Europhysics Letters), vol. 4, no. 9, pp. 973, 1987. [DOI:10.1209/0295-5075/4/9/004]
24. [24] N. Marwan, and A. Meinke, "Extended recurrence plot analysis and its application to ERP data," International Journal of Bifurcation and Chaos, vol. 14, no. 02, pp. 761-771, 2004. [DOI:10.1142/S0218127404009454]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing