در بازشناسی الگو یکی از روش های افزایش دقت بازشناسی، بهره گیری از روش های متمایز ساز است. این روش ها یا به صورت تبدیل متمایزساز بر ویژگی ها بکار می روند یا از روش های یادگیری متمایزساز برای آموزش دسته بند استفاده می کنند. معمولا معیار تبدیلات متمایز ساز متفاوت با معیار آموزش و یا خطای دسته بندهای متمایز ساز است. در مقاله حاضر، برای هماهنگ کردن معیار تبدیل ویژگی و نیز معیار دسته بندی ماشین بردار پشتیبان روشی برای تخمین تبدیل ویژگی با استفاده از الگوریتم ژنتیک (GA) پیشنهاد می شود که معیار تبدیل آن کمینه کردن خطای دسته بندی ماشین بردار پشتیبان است. علاوه بر این، روشی برای تخمین تبدیل ویژگی با استفاده از الگوریتم ژنتیک دوهدفه، پیشنهاد می شود که معیار این تبدیل بیشینه شدن تمایز بین دسته ای (مطابق با معیار روش های تبدیل ویژگی) و کمینه کردن خطای دسته بندی ماشین بردار پشتیبان به صورت همزمان است. ارزیابی بر روی دادگان UCI نشان می دهد که استفاده از معیارهای همزمان خطای دسته بندی و تمایز بین دسته ای در تبدیل ویژگی سبب بهبود عملکرد تبدیلات ویژگی متمایز ساز متداول در افزایش دقت دسته بندی ماشین بردار پشتیبان می گردد. علاوه بر اینکه استفاده از تبدیل ویژگی با معیار خطای دسته بندی نسبت به دیگر روش های شناخته شده تبدیل ویژگی و نیز روش دو هدفه، دقت دسته بندی ماشین بردار پشتیبان را بیشتر افزایش می دهد.
بازنشر اطلاعات | |
![]() |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |