دوره 22، شماره 2 - ( 6-1404 )                   جلد 22 شماره 2 صفحات 96-79 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azarnavid B, Abdolhosseinzadeh M, Emami H. Stacking machine learning model for classification and prediction of liver diseases. JSDP 2025; 22 (2) : 5
URL: http://jsdp.rcisp.ac.ir/article-1-1454-fa.html
آذرنوید بابک، عبدالحسین‌زاده محسن، امامی حجت. مدل یادگیری ماشین انباشته برای دسته‌بندی و پیش‌بینی بیماری‌های کبدی. پردازش علائم و داده‌ها. 1404; 22 (2) :79-96

URL: http://jsdp.rcisp.ac.ir/article-1-1454-fa.html


استادیار گروه ریاضی و علوم کامپیوتر، دانشکده علوم پایه، دانشگاه بناب، بناب، ایران
چکیده:   (239 مشاهده)
بیماری‌های کبدی یکی از علل اصلی مرگ‌ومیر هستند که تأثیر عمیقی بر زندگی افراد دارند و تشخیص آن‌ها در مراحل اولیه بسیار حیاتی است. هدف این پژوهش، توسعه و ارزیابی مدل یادگیری ماشین انباشته (SML) برای تشخیص و پیش‌بینی دقیق بیماری‌های کبدی است. مدل SML با استفاده از ساختار دولایه، الگوریتم‌های مختلف را ترکیب کرده تا مشکل بیش‌برازش را برطرف کند و دقت پیش‌بینی را افزایش دهد. در لایه نخست، چهار الگوریتم شامل درخت تصادفی نامحدود (ET)، درخت تصمیم (DT)، جنگل تصادفی (RF) و تقویت گرادیان شدید (XGB) برای پیش‌بینی اولیه استفاده می‌شوند. در لایه دوم، الگوریتم رگرسیون ترابری (LR) بر اساس خروجی لایه نخست آموزش داده می‌شود تا پیش‌بینی نهایی انجام شود. تنظیم پارامترها با الگوریتم جست‌وجوی شبکه توری (GS) انجام شده‌است. داده‌های مورد استفاده شامل 615 نمونه‌داده با دوازده ویژگی از پایگاه دانشگاه کالیفرنیا در ایروین است که 70% برای آموزش و 30% برای آزمایشی اختصاص ‌یافته است. نتایج اعتبارسنجی متقابل k=5 نشان می‌دهد که مدل پیشنهادی با صحت 0.9940 و معیار F1 برابر 0.9880، عملکرد برتری نسبت به سایر روش‌ها دارد. این پژوهش می‌تواند به کاهش مرگ‌ومیر ناشی از بیماری‌های کبدی کمک شایانی کند.
شماره‌ی مقاله: 5
متن کامل [PDF 3016 kb]   (86 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه علائم حیاتی ( مرتبط با مهندسی پزشکی)
دریافت: 1403/11/7 | پذیرش: 1404/4/30 | انتشار: 1404/6/22 | انتشار الکترونیک: 1404/6/22

فهرست منابع
1. C. Gan, Y. Yuan, H. Shen, et al., "Liver diseases: epidemiology, causes, trends and predictions," Signal Transduction and Targeted Therapy, vol. 10, no. 33, 2025, doi: 10.1038/s41392-024-02072-z. [DOI:10.1038/s41392-024-02072-z] [PMID] []
2. S. K. Asrani, H. Devarbhavi, J. Eaton, P. S. K.-J. of hepatology, and undefined 2019, "Burden of liver diseases in the world," Elsevier, 2019, doi: 10.1016/j.jhep.2018.09.014. [DOI:10.1016/j.jhep.2018.09.014] [PMID]
3. A. Al Ahad, B. Das, M. R. Khan, N. Saha, A. Zahid, and M. Ahmad, "Multiclass liver disease prediction with adaptive data preprocessing and ensemble modeling," Results in Engineering, vol. 22, p. 102059, 2024. [DOI:10.1016/j.rineng.2024.102059]
4. R. K. Sterling et al., "AASLD Practice Guideline on blood-based noninvasive liver disease assessment of hepatic fibrosis and steatosis," Hepatology, 2024, doi: 10.1097/HEP.0000000000000845. [DOI:10.1097/HEP.0000000000000845] [PMID]
5. S. Aminizadeh et al., "Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service," Artif Intell Med, vol. 149, Mar. 2024, doi: 10.1016/J.ARTMED.2024.102779. [DOI:10.1016/j.artmed.2024.102779] [PMID]
6. P. Theerthagiri, "Liver disease classification using histogram-based gradient boosting classification tree with feature selection algorithm," Biomed Signal Process Control, vol. 100, Feb. 2025, doi: 10.1016/J.BSPC.2024.107102. [DOI:10.1016/j.bspc.2024.107102]
7. مجرد، موسی، پروین، حمید، نجاتیان، صمد، باقری فرد، کرم الله، «ترکیب یک روش خوشه‌بندی تجمعی و یک معیار شباهت جدید برای مدل‌سازی رفتار وراثتی بیماری‌ها»، فصلنامة پردازش علائم و داده‌ها، دورة 18، شمارة 2، صص97-114، 1400.
7. M. Mojarad, H. Parvin, S. Nejatiyan, and K. A. Bagheri Fard, "Combining an Ensemble Clustering Method and a New Similarity Criterion for Modeling the Hereditary Behavior of Diseases," Signal and Data Processing, vol. 18, no. 2, pp. 97-114, Oct. 2021, doi: 10.52547/JSDP.18.2.97. [DOI:10.52547/jsdp.18.2.97]
8. امامی، نسیبه، حسنی، زینب، «پیش‌بینی و تعیین عوامل مؤثر بر بقای پنج‌سالۀ کلیۀ پیوندی در داده‌های نامتوازن با رویکرد فراابتکاری و یادگیری ماشین»، فصلنامة پردازش علائم و داده‌ها، دورة 15، شمارة 4، صص 85-94، 1397.
8. N. Emami and Z. Hassani, "Prediction and determining the effective factors on the survival transplanted kidney for five-year in imbalanced data by the meta-heuristic approach and machine learning," Signal and Data Processing, vol. 15, pp. 85-94, 2019, doi: 10.29252/JSDP.15.4.85. [DOI:10.29252/jsdp.15.4.85]
9. S. Hashem et al., "Machine Learning Prediction Models for Diagnosing Hepatocellular Carcinoma with HCV-related Chronic Liver Disease," Comput Methods Programs Biomed, vol. 196, p. 105551, Nov. 2020, doi: 10.1016/J.CMPB.2020.105551. [DOI:10.1016/j.cmpb.2020.105551] [PMID]
10. K. Moulaei, H. Sharifi, K. Bahaadinbeigy, A. A. Haghdoost, and N. Nasiri, "Machine learning for prediction of viral hepatitis: A systematic review and meta-analysis," Int J Med Inform, vol. 179, p. 105243, Nov. 2023, doi: 10.1016/J.IJMEDINF.2023.105243. [DOI:10.1016/j.ijmedinf.2023.105243] [PMID]
11. D. A. Jadhav, "An enhanced and secured predictive model of Ada-Boost and Random-Forest techniques in HCV detections," Mater Today Proc, vol. 51, pp. 186-195, Jan. 2022, doi: 10.1016/J.MATPR.2021.05.071. [DOI:10.1016/j.matpr.2021.05.071]
12. F. B. Mostafa and M. E. Hasan, "Machine Learning Approaches for Inferring Liver Diseases and Detecting Blood Donors from Medical Diagnosis," medRxiv, Apr. 2021, doi: 10.1101/2021.04.26.21256121. [DOI:10.1101/2021.04.26.21256121]
13. P. T. Bharathi, S. N. Bindu, S. G. Deepthi, H. U. Gunakeerthi, and K. U. Harshitha, "AI based solution for Predicting Hepatitis C Virus from Blood Samples," International Conference on Smart Systems for Applications in Electrical Sciences, ICSSES 2024, 2024, doi: 10.1109/ICSSES62373. 2024.10561391. [DOI:10.1109/ICSSES62373.2024.10561391]
14. M. Cedolin, M. E. Genevois, and Z. Canbulat, "Hepatitis C Diagnosis Using Computational Intelligence Techniques," Lecture Notes in Networks and Systems, vol. 1090 LNNS, pp. 29-36, 2024, doi: 10.1007/978-3-031-67192-0_4. [DOI:10.1007/978-3-031-67192-0_4]
15. M. Arif, M. A. Aslam, H. U. Rehman, M. Abbas, and S. Bukhari, "Laboratory Diagnostic Pathways Using Machine Learning," VFAST Transactions on Software Engineering, vol. 10, no. 1, pp. 78-85, Mar. 2022, doi: 10.21015/VTSE.V10I1.826. [DOI:10.21015/vtse.v10i1.826]
16. I. Trulson, S. Holdenrieder, and G. Hoffmann, "Using machine learning techniques for exploration and classification of laboratory data," Journal of Laboratory Medicine, vol. 48, no. 5, pp. 203-214, 2024. [DOI:10.1515/labmed-2024-0100]
17. K. N. Singh and J. K. Mantri, "A clinical decision support system using rough set theory and machine learning for disease prediction," Intelligent Medicine, vol. 4, no. 3, pp. 200-208, Aug. 2024, doi: 10.1016/J.IMED.2023.08.002. [DOI:10.1016/j.imed.2023.08.002]
18. H. Kaur, H. S. Pannu, and A. K. Malhi, "A Systematic Review on Imbalanced Data Challenges in Machine Learning," ACM Computing Surveys (CSUR), vol. 52, no. 4, Aug. 2019, doi: 10.1145/3343440. [DOI:10.1145/3343440]
19. T.-H. S. Li, H.-J. Chiu, and P.-H. Kuo, "Hepatitis C virus detection model by using random forest, logistic-regression and ABC algorithm," IEEE Access, vol. 10, pp. 91045-91058, 2022. [DOI:10.1109/ACCESS.2022.3202295]
20. M. M. Ershadi and A. Seifi, "Applications of dynamic feature selection and clustering methods to medical diagnosis," Appl Soft Comput, vol. 126, p. 109293, Sep. 2022, doi: 10.1016/J.ASOC.2022.109293. [DOI:10.1016/j.asoc.2022.109293]
21. M. Y. Shams, E. S. M. El-kenawy, A. Ibrahim, and A. M. Elshewey, "A hybrid dipper throated optimization algorithm and particle swarm optimization (DTPSO) model for hepatocellular carcinoma (HCC) prediction," Biomed Signal Process Control, vol. 85, p. 104908, Aug. 2023, doi: 10.1016/J.BSPC.2023.104908. [DOI:10.1016/j.bspc.2023.104908]
22. J. S. Sartakhti, M. H. Zangooei, and K. Mozafari, "Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)," Comput Methods Programs Biomed, vol. 108, no. 2, pp. 570-579, Nov. 2012, doi: 10.1016/J.CMPB.2011.08.003. [DOI:10.1016/j.cmpb.2011.08.003] [PMID]
23. M. Yağanoğlu, "Hepatitis C virus data analysis and prediction using machine learning," Data Knowl Eng, vol. 142, p. 102087, Nov. 2022, doi: 10.1016/J.DATAK.2022.102087. [DOI:10.1016/j.datak.2022.102087]
24. F. Mostafa, E. Hasan, M. Williamson, and H. Khan, "Statistical machine learning approaches to liver disease prediction," Livers, vol. 1, no. 4, pp. 294-312, 2021. [DOI:10.3390/livers1040023]
25. G. Hoffmann, A. Bietenbeck, R. Lichtinghagen, and F. Klawonn, "Using machine learning techniques to generate laboratory diagnostic pathways-a case study," J Lab Precis Med, vol. 3, no. 6, 2018. [DOI:10.21037/jlpm.2018.06.01]
26. D. Chicco and G. Jurman, "An ensemble learning approach for enhanced classification of patients with hepatitis and cirrhosis," IEEE Access, vol. 9, pp. 24485-24498, 2021. [DOI:10.1109/ACCESS.2021.3057196]
27. A. Orooji and F. Kermani, "Machine learning based methods for handling imbalanced data in hepatitis diagnosis," Frontiers in Health Informatics, vol. 10, no. 1, p. 57, 2021. [DOI:10.30699/fhi.v10i1.259]
28. H. Mamdouh Farghaly, M. Y. Shams, and T. Abd El-Hafeez, "Hepatitis C Virus prediction based on machine learning framework: a real-world case study in Egypt," Knowl Inf Syst, vol. 65, no. 6, pp. 2595-2617, Jun. 2023, doi: 10.1007/S10115-023-01851-4/TABLES/7. [DOI:10.1007/s10115-023-01851-4]
29. A. Alizargar, Y. L. Chang, and T. H. Tan, "Performance Comparison of Machine Learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques," Bioengineering, vol. 10, no. 4, p. 481, Apr. 2023, doi: 10.3390/BIOENG INEERING10040481/S1. [DOI:10.3390/bioengineering10040481] [PMID] []
30. R. Safdari, A. Deghatipour, M. Gholamzadeh, and K. Maghooli, "Applying data mining techniques to classify patients with suspected hepatitis C virus infection," Intelligent Medicine, vol. 2, no. 4, pp. 193-198, Nov. 2022, doi: 10.1016/J.IMED.2021.12.003. [DOI:10.1016/j.imed.2021.12.003]
31. P. A. A. Resende and A. C. Drummond, "A Survey of Random Forest Based Methods for Intrusion Detection Systems," ACM Computing Surveys (CSUR), vol. 51, no. 3, May 2018, doi: 10.1145/3178582. [DOI:10.1145/3178582]
32. D. M. W. Powers, "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation," Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37-63, 2011.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.