1. Han, Jiawei, Jian Pei, and Micheline Kamber, Data mining: concepts and techniques, Elsevier, 2011.
2. Zhang, Min-Ling, and Zhi-Hua Zhou. "A review on multi-label learning algorithms", IEEE transactions on knowledge and data engineering, 26.8, 1819-1837, 2013. [
DOI:10.1109/TKDE.2013.39]
3. Chalkidis, Ilias, et al. "Large-scale multi-label text classification on EU legislation", arXiv preprint arXiv, 1906.02192, 2019. [
DOI:10.18653/v1/P19-1636]
4. Spyromitros-Xioufis, Eleftherios, et al. "Multi-target regression via input space expansion: treating targets as inputs", Machine Learning, 104, 55-98, 2016. [
DOI:10.1007/s10994-016-5546-z]
5. Yang, Qi, et al. "Amnn: Attention-based multimodal neural network model for hashtag recommendation", IEEE Transactions on Computational Social Systems, 7.3, 768-779, 2020. [
DOI:10.1109/TCSS.2020.2986778]
6. Lee, Jaesung, et al. "Compact feature subset-based multi-label music categorization for mobile devices", Multimedia Tools and Applications, 78, 4869-4883, 2019. [
DOI:10.1007/s11042-018-6100-8]
7. Wang, Jiang, et al. "Cnn-rnn: A unified framework for multi-label image classification", Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. [
DOI:10.1109/CVPR.2016.251]
8. Khandagale, Sujay, Han Xiao, and Rohit Babbar, "Bonsai: diverse and shallow trees for extreme multi-label classification", Machine Learning 109 (11), 2099-2119, 2020. [
DOI:10.1007/s10994-020-05888-2]
9. Tanaka, Erica Akemi, et al. "A multi-label approach using binary relevance and decision trees applied to functional genomics", Journal of biomedical informatics, 54, 85-95, 2015. [
DOI:10.1016/j.jbi.2014.12.011] [
PMID]
10. Prajapati, Purvi, Thakkar, Amit, "Performance improvement of extreme multi-label classification using K-way tree construction with parallel clustering algorithm", Journal of King Saud University-Computer and Information Sciences, 34(8), 6354-6364, 2021. [
DOI:10.1016/j.jksuci.2021.02.014]
11. Prabhu, Yashoteja, et al. "Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising", Proceedings of the 2018 World Wide Web Conference, 2018, 993-1002. [
DOI:10.1145/3178876.3185998]
12. Zhang, Min-Ling, et al. "Binary relevance for multi-label learning: an overview", Frontiers of Computer Science, 12(2), 191-202, (2018). [
DOI:10.1007/s11704-017-7031-7]
13. Jun, Xie, et al. "Conditional entropy based classifier chains for multi-label classification", Neurocomputing, 335, 185-194, 2019. [
DOI:10.1016/j.neucom.2019.01.039]
14. Wang, Ran, et al. "Active k-labelsets ensemble for multi-label classification", Pattern Recognition, 109, 107583, (2021). [
DOI:10.1016/j.patcog.2020.107583]
15. Moyano, Jose M., et al. "Combining multi-label classifiers based on projections of the output space using Evolutionary algorithms", Knowledge-Based Systems, 196, 105770, 2020. [
DOI:10.1016/j.knosys.2020.105770]
16. Cerri, Ricardo, Rodrigo C. Barros, and André CPLF De Carvalho, "Hierarchical multi-label classification using local neural networks", Journal of Computer and System Sciences, 80.1, 39-56, 2014. [
DOI:10.1016/j.jcss.2013.03.007]
17. Li, Junlong, et al. "Learning common and label-specific features for multi-Label classification with correlation information", Pattern Recognition , 121, 108259, 2022.
https://doi.org/10.1016/j.patcog.2021.108259 [
DOI:10.1016/j.patcog.2021.108256]
18. Zhu, Xiaoyan, et al. "Dynamic ensemble learning for multi-label classification", Information Sciences, 623, 94-111, 2023. [
DOI:10.1016/j.ins.2022.12.022]
19. J. Huang, G. Li, Q. Huang, X. Wu, "Learning label specific features for multi-label classification", IEEE ICDM 2015, pp. 181-190, 2015. [
DOI:10.1109/ICDM.2015.67]
20. J. Huang, G. Li, Q. Huang, X. Wu, "Learning label-specific features and class dependent labels for multi-label classification", IEEE Trans. Knowl. Data Eng, 28 (12), 3309-3323, 2016. [
DOI:10.1109/TKDE.2016.2608339]
21. A. Braytee, W. Liu, A. Anaissi, P.J. Kennedy, "Correlated multi-label classification with incomplete label space and class imbalance", ACM Trans. Intell. Syst. Technol. 10 (5), 56:1-56:26, 2019. [
DOI:10.1145/3342512]
22. Y. Wang, W. Zheng, Y. Cheng, D. Zhao, "Joint label completion and label-specific features for multi-label learning algorithm", Soft Comput, 24 (11), 6553-6569, 2020. [
DOI:10.1007/s00500-020-04775-1]
23. H. Han, M. Huang, Y. Zhang, X. Yang, W. Feng, "Multi-label learning with label specific features using correlation information", IEEE Access 7, 11474- 11484, 2017. [
DOI:10.1109/ACCESS.2019.2891611]
24. X. Jia, S. Zhu, W. Li, "Joint label-specific features and correlation information for multi-label learning", J. Comput. Sci. Technol. 35 (2) (2020) 247-258 [
DOI:10.1007/s11390-020-9900-z]
25. صامت عمرانی، مسلم، صنیعی آباده، محمد، مقدم چرکری، نصراله، «تشخیص شایعه در شبکه اجتماعی توییتر با استفاده از ویژگیهای توییت و کاربر»، فصلنامة پردازش علائم و دادهها، دورة 21، شمارة 2، صص 15-28، 1403.
25. Moslem Samet Omrani, Mohammad Saniee Abadeh, Nasrollah Moghaddam Charkari, "Rumor Detection on Twitter using tweet and user features", Signal and Data Processing, 21(2), 15-28. 2024. [
DOI:10.61186/jsdp.21.2.15]
26. پروین نیا، الهام، صفری، محمد، خیامی، سید علیرضا، «تشخیص حالت غیر نرمال ماشین های دوار با داده کاوی در پارامترهای حفاظتی»، فصلنامة پردازش علائم و دادهها، دورة 21، شمارة 1، صص 27-38، 1403.
26. Elham Parvinnia, Mohammad Safari, Seyed Alireza Khayami, "Exploring on rotating machines abnormal state with data mining in protective parameters", Signal and Data Processing, 21(1), 27-38, 2024. [
DOI:10.61186/jsdp.21.1.27]