Volume 22, Issue 1 (5-2025)                   JSDP 2025, 22(1): 3-12 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi S, Khodabakhsh M. Unsupervised Methods for Predicting Query Performance. JSDP 2025; 22 (1) :3-12
URL: http://jsdp.rcisp.ac.ir/article-1-1407-en.html
Assistant Professor of Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
Abstract:   (261 Views)
With the rapid increase in the use of search engines, the need for developing more effective information retrieval and ranking methods has become critical. One of the key challenges in information retrieval is predicting query performance, which involves estimating how well a search engine can fulfill a user's information need. Accurate prediction of query performance allows search engines to take adaptive actions, such as query reformulation or ranking adjustment, to enhance retrieval effectiveness. Query Performance Prediction (QPP) methods fall into two main categories: pre-retrieval prediction and post-retrieval prediction. Pre-retrieval predictors estimate query difficulty before the retrieval process, relying on linguistic and statistical query features rather than retrieved documents. In contrast, post-retrieval prediction methods assess query performance based on the ranking list and document collection, providing deeper insights into retrieval effectiveness. In this study, we propose a novel unsupervised post-retrieval QPP method that evaluates query performance by analyzing the clustering behavior of retrieved documents. Our method defines five new metrics—CC, DCIC, DCNIC, DCNICR, and CCR— to measure the distribution and coherence of retrieved documents. These metrics help assess query difficulty by capturing how documents group into clusters, identifying outlier documents that do not fit well into clusters, and evaluating the overall structure of retrieved results. By leveraging these metrics, our approach provides a more fine-grained estimation of query performance without requiring human-labeled data. To evaluate the effectiveness of the proposed method, we conduct experiments on three datasets: TREC DL 2019, TREC DL 2020, and DL-Hard. The results demonstrate that our approach improves Spearman's correlation coefficient by 0.009 and 0.163 on the TREC DL 2019 and DL-Hard datasets, respectively. Additionally, it increases Pearson’s correlation coefficient by 0.037 on the TREC DL 2020 dataset compared to state-of-the-art unsupervised QPP methods. These improvements indicate that clustering-based QPP methods can effectively capture query difficulty and retrieval quality without the need for external supervision.
Full-Text [PDF 769 kb]   (122 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2023/11/13 | Accepted: 2025/03/8 | Published: 2025/06/21 | ePublished: 2025/06/21

References
1. M. Khodabakhsh and E. Bagheri, "Learning to rank and predict: Multi-task learning for ad hoc retrieval and query performance prediction," Inf. Sci. (Ny)., vol. 639, 2023, doi: 10.1016/j.ins.2023.119015. [DOI:10.1016/j.ins.2023.119015]
2. N. Arabzadeh, M. Khodabakhsh, and E. Bagheri, "BERT-QPP: Contextualized Pre-trained transformers for Query Performance Prediction," Int. Conf. Inf. Knowl. Manag. Proc., pp. 2857-2861, 2021, doi: 10.1145/3459637.3482063. [DOI:10.1145/3459637.3482063]
3. J. ForutanRad, M. HourAli, and M. KeyvanRad, "Farsi Question and Answer Dataset (FarsiQuAD)," Signal Data Process., vol. 20, no. 4, 2024, doi: 10.61186/jsdp.20.4.107. [DOI:10.61186/jsdp.20.4.107]
4. O. Khattab and M. Zaharia, "ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT," SIGIR 2020 - Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 39-48, 2020, doi: 10.1145/3397271.3401075. [DOI:10.1145/3397271.3401075]
5. L. Xiong et al., "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval," ICLR 2021 - 9th Int. Conf. Learn. Represent., pp. 1-16, 2021.
6. T. Formal, C. Lassance, B. Piwowarski, and S. Clinchant, From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective, vol. 1, no. 1. Association for Computing Machinery, 2022. doi: 10.1145/3477495.3531857. [DOI:10.1145/3477495.3531857]
7. R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin, "Document ranking with a pretrained sequence-to-sequence model," Find. Assoc. Comput. Linguist. Find. ACL EMNLP 2020, pp. 708-718, 2020, doi: 10.18653/v1/2020.findings-emnlp.63. [DOI:10.18653/v1/2020.findings-emnlp.63]
8. T. A. Nakamura, P. H. Calais, D. de C. Reis, and A. P. Lemos, "An anatomy for neural search engines," Inf. Sci. (Ny)., vol. 480, pp. 339-353, 2019, doi: 10.1016/j.ins.2018.12.041. [DOI:10.1016/j.ins.2018.12.041]
9. G. Hirst, J. Lin, R. Nogueira, and A. Yates, "Pretrained Transformers for Text Ranking: BERT and beyond," Synth. Lect. Hum. Lang. Technol., vol. 14, no. 4, pp. 1-325, 2021, doi: 10.2200/S01123ED1V01Y2021 08HLT053.
10. K. Sparck Jones, S. Walker, and S. E. Robertson, "Probabilistic model of information retrieval: Development and comparative experiments. Part 2," Inf. Process. Manag., vol. 36, no. 6, pp. 809-840, 2000, doi: 10.1016/S0306-4573(00)00016-9. [DOI:10.1016/S0306-4573(00)00016-9]
11. J. Lafferty and C. Zhai, "Document language models, query models, and risk minimization for information retrieval," SIGIR Forum (ACM Spec. Interes. Gr. Inf. Retrieval), vol. 51, no. 2, pp. 111-119, 2001, doi: 10.1145/383952.383970. [DOI:10.1145/383952.383970]
12. E. Bagheri and F. N. Al-Obeidat, "A Latent Model for Ad Hoc Table Retrieval," Adv. Inf. Retr., vol. 12036, pp. 86-93, 2020, [Online]. Available: https://api.semanticscholar.org/Corpus ID:215746638 [DOI:10.1007/978-3-030-45442-5_11] []
13. N. Arabzadeh, F. Zarrinkalam, J. Jovanovic, and E. Bagheri, "Neural embedding-based metrics for pre-retrieval query performance prediction," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12036 LNCS, pp. 78-85, 2020, doi: 10.1007/978-3-030-45442-5_10. [DOI:10.1007/978-3-030-45442-5_10] []
14. C. Hauff, D. Hiemstra, and F. De Jong, "A survey of pre-retrieval query performance predictors," Int. Conf. Inf. Knowl. Manag. Proc., pp. 1419-1420, 2008, doi: 10.1145/1458082.1458311. [DOI:10.1145/1458082.1458311]
15. G. Faggioli, O. Zendel, J. S. Culpepper, N. Ferro, and F. Scholer, "sMARE: a new paradigm to evaluate and understand query performance prediction methods," Inf. Retr. J., vol. 25, no. 2, pp. 94-122, 2022, doi: 10.1007/s10791-022-09407-w. [DOI:10.1007/s10791-022-09407-w]
16. H. Roitman, S. Erera, and G. Feigenblat, "A study of query performance prediction for answer quality determination," ICTIR 2019 - Proc. 2019 ACM SIGIR Int. Conf. Theory Inf. Retr., pp. 43-46, 2019, doi: 10.1145/3341981.3344219. [DOI:10.1145/3341981.3344219]
17. G. Faggioli, T. Formal, S. Marchesin, S. Clinchant, N. Ferro, and B. Piwowarski, "Query Performance Prediction for Neural IR: Are We There Yet?," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13980 LNCS, pp. 232-248, 2023, doi: 10.1007/978-3-031-28244-7_15. [DOI:10.1007/978-3-031-28244-7_15]
18. S. Sarnikar, Z. Zhang, and J. Zhao, "Query-Performance Prediction for Effective Query Routing in Domain-Specific Repositories," J. Assoc. Inf. Sci. Technol., vol. 65, 2014, doi: 10.1002/asi.23072. [DOI:10.1002/asi.23072]
19. D. Carmel and E. Yom-Tov, Estimating the query difficulty for information retrieval. Morgan & Claypool Publishers, 2010. [DOI:10.1007/978-3-031-02272-2]
20. J. S. Culpepper, G. Faggioli, N. Ferro, and O. Kurland, "Topic Difficulty: Collection and Query Formulation Effects," ACM Trans. Inf. Syst., vol. 40, no. 1, Sep. 2021, doi: 10.1145/3470563. [DOI:10.1145/3470563]
21. G. Faggioli, S. Lupart, S. Marchesin, N. Ferro, and B. Piwowarski, "Towards Query Performance Prediction for Neural Information Retrieval : Challenges and Opportunities," pp. 51-63, doi: 10.1145/3578337.3605142. [DOI:10.1145/3578337.3605142]
22. M. Khodabakhsh and E. Bagheri, "Semantics-enabled query performance prediction for ad hoc table retrieval," Inf. Process. Manag., vol. 58, no. 1, p. 102399, 2021, doi: 10.1016/j.ipm.2020.102399. [DOI:10.1016/j.ipm.2020.102399]
23. S. Cronen-Townsend, Y. Zhou, and W. B. Croft, "Predicting query performance," SIGIR Forum (ACM Spec. Interes. Gr. Inf. Retrieval), pp. 299-306, 2002, doi: 10.1145/564426.564429. [DOI:10.1145/564426.564429]
24. F. Raiber and O. Kurland, "Query-performance prediction: Setting the expectations straight," SIGIR 2014 - Proc. 37th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 13-22, 2014, doi: 10.1145/2600428.2609581. [DOI:10.1145/2600428.2609581]
25. H. Roitman, S. Erera, O. Sar-Shalom, and B. Weiner, "Enhanced mean retrieval score estimation for query performance prediction," ICTIR 2017 - Proc. 2017 ACM SIGIR Int. Conf. Theory Inf. Retr., no. October, pp. 35-42, 2017, doi: 10.1145/3121050.3121051. [DOI:10.1145/3121050.3121051]
26. H. Roitman, S. Erera, and B. Weiner, "Robust standard deviation estimation for query performance prediction," ICTIR 2017 - Proc. 2017 ACM SIGIR Int. Conf. Theory Inf. Retr., pp. 245-248, 2017, doi: 10.1145/3121050.3121087. [DOI:10.1145/3121050.3121087]
27. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171-4186, 2019.
28. M. and et al. Robertson, Stephen E and Walker, Steve and Jones, Susan and Hancock-Beaulieu, Micheline M and Gatford, "Okapi at TREC-3," Nist Spec. Publ. Sp, vol. 109, p. 109, 1995. [DOI:10.6028/NIST.SP.500-225.city]
29. J. Sander, M. Ester, H. P. Kriegel, and X. Xu, "Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications," Data Min. Knowl. Discov., vol. 2, no. 2, pp. 169-194, 1998, doi: 10.1023/A:1009745219419. [DOI:10.1023/A:1009745219419]
30. N. Craswell, B. Mitra, E. Yilmaz, and D. Campos, "Overview of the TREC 2019 deep learning track," pp. 1-22, 2020, [Online]. Available: http://arxiv.org/abs/2102.07662 [DOI:10.6028/NIST.SP.1266.deep-overview]
31. N. Craswell, B. Mitra, E. Yilmaz, and D. Campos, "Overview of the TREC 2020 deep learning track," pp. 1-13, 2021, [Online]. Available: http://arxiv.org/abs/2102.07662 [DOI:10.6028/NIST.SP.1266.deep-overview]
32. I. MacKie, J. Dalton, and A. Yates, "How Deep is your Learning: The DL-HARD Annotated Deep Learning Dataset," SIGIR 2021 - Proc. 44th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., no. July, pp. 2335-2341, 2021, doi: 10.1145/3404835.3463 262. [DOI:10.1145/3404835.3463262]
33. Y. Z. and W. B. Croft, "Query performance prediction in web search environments," in " in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007, pp. 543-550. [DOI:10.1145/1277741.1277835] []
34. D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum, "Hierarchical topic models and the nested Chinese restaurant process," Adv. Neural Inf. Process. Syst., no. May 2004, 2004.
35. A. Singh, D. Ganguly, S. Datta, and C. Macdonald, Unsupervised Query Performance Prediction for Neural Models with Pairwise Rank Preferences, vol. 1, no. 1. Association for Computing Machinery, 2023. doi: 10.1145/3539618.3592082. [DOI:10.1145/3539618.3592082]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing