دوره 21، شماره 3 - ( 10-1403 )                   جلد 21 شماره 3 صفحات 84-69 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahani S A, Mohebbi K, Zamani Boroujeni F. Improving Scene Recognition in Remote Sensing Using Deep Learning and Feature Selector. JSDP 2024; 21 (3) : 3
URL: http://jsdp.rcisp.ac.ir/article-1-1398-fa.html
جهانی سید علی، محبی کیوان، زمانی بروجنی فرساد. بهبود تشخیص صحنه در سنجش از راه‌دور با استفاده از یادگیری عمیق و انتخاب‌گر ویژگی. پردازش علائم و داده‌ها. 1403; 21 (3) :69-84

URL: http://jsdp.rcisp.ac.ir/article-1-1398-fa.html


استادیار گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران
چکیده:   (804 مشاهده)
تصاویر سنجش‌‌ازدور به‌عنوان منبع‌داده با ارزش می‌تواند در اندازه‌گیری و مشاهده ساختارهای دقیق در سطح زمین کمک کند. هدف این پژوهش ارائه راهکار تشخیص صحنه در سنجش از راه‌‌دور با به‌کارگیری روش‌های یادگیری عمیق است. برای رفع محدودیت‌های روش‌های پیشین، یک رویکرد ترکیبی استخراج ویژگی مطرح شده‌است که در آن دو نوع ویژگی عمیق محلی و سراسری و یک ‌نوع محلی دستی با یکدیگر ترکیب شده­اند. برای استخراج ویژگی‌ها یک شبکه‌ کانولوشن پیش‌آموزش‌دیده با بیست لایه تمام‌متصل پیشنهاد شده‌است؛ همچنین یک مرحله انتخاب ویژگی با استفاده از دو دسته الگوریتم‌های پالایه و بسته­بند در این ‌مدل تعبیه شده‌است؛ در نهایت با استفاده از الگوریتم‌های طبقه‌بندی مختلف تشخیص صحنه انجام می‌شود. ارزیابی راهکار پیشنهادی برای مجموعه‌داده­های UCM، AID ،RSSCN7 و NWPU-RESISC45 به‌ترتیب دقت 27/99% ، 91/97% ، 09/99% و 09/93% را کسب کرده‌است.
شماره‌ی مقاله: 3
متن کامل [PDF 1504 kb]   (135 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1402/6/18 | پذیرش: 1403/5/31 | انتشار: 1403/10/28 | انتشار الکترونیک: 1403/10/28

فهرست منابع
1. Q. Hu et al., "Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping," Remote Sensing, vol. 5, no. 11, pp. 6026-6042, 2013. [DOI:10.3390/rs5116026]
2. L. Gómez-Chova, D. Tuia, G. Moser, and G. Camps-Valls, "Multimodal classification of remote sensing images: A review and future directions," Proceedings of the IEEE, vol. 103, no. 9, pp. 1560-1584, 2015. [DOI:10.1109/JPROC.2015.2449668]
3. A. Tayyebi, B. C. Pijanowski, and A. H. Tayyebi, "An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran," Landscape and Urban Planning, vol. 100, no. 1-2, pp. 35-44, 2011. [DOI:10.1016/j.landurbplan.2010.10.007]
4. Z. Y. Lv, W. Shi, X. Zhang, and J. A. Benediktsson, "Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation," IEEE journal of selected topics in applied earth observations and remote sensing, vol. 11, no. 5, pp. 1520-1532, 2018. [DOI:10.1109/JSTARS.2018.2803784]
5. T. R. Martha, N. Kerle, C. J. Van Westen, V. Jetten, and K. V. Kumar, "Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis," IEEE transactions on geoscience and remote sensing, vol. 49, no. 12, pp. 4928-4943, 2011. [DOI:10.1109/TGRS.2011.2151866]
6. F. Ghazouani, I. R. Farah, and B. Solaiman, "A multi-level semantic scene interpretation strategy for change interpretation in remote sensing imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 8775-8795, 2019. [DOI:10.1109/TGRS.2019.2922908]
7. Y. Li, Y. Zhang, X. Huang, and A. L. Yuille, "Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images," ISPRS journal of photogrammetry and remote sensing, vol. 146, pp. 182-196, 2018. [DOI:10.1016/j.isprsjprs.2018.09.014]
8. Y. Gu, Y. Wang, and Y. Li, "A survey on deep learning-driven remote sensing image scene understanding: Scene classification, scene retrieval and scene-guided object detection," Applied Sciences, vol. 9, no. 10, p. 2110, 2019. [DOI:10.3390/app9102110]
9. G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, "Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3735-3756, 2020. [DOI:10.1109/JSTARS.2020.3005403]
10. W. Wang, Y. Chen, and P. Ghamisi, "Transferring CNN With Adaptive Learning for Remote Sensing Scene Classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022. [DOI:10.1109/TGRS.2022.3190934]
11. K. Xu, H. Huang, P. Deng, and Y. Li, "Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing," IEEE Transactions on Neural Networks and Learning Systems, 2021. [DOI:10.1109/TNNLS.2021.3071369] [PMID]
12. S. Aggarwal, "Principles of remote sensing," Satellite remote sensing and GIS applications in agricultural meteorology, vol. 23, no. 2, pp. 23-28, 2004.
13. M. a. Ahmadi and R. Dianat, "Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks," (in eng), Signal and Data Processing, Research vol. 17, no. 3, pp. 141-156, 2020. [DOI:10.29252/jsdp.17.3.141]
14. A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artificial intelligence review, vol. 53, no. 8, pp. 5455-5516, 2020. [DOI:10.1007/s10462-020-09825-6]
15. M. A. Zare Chahooki and z. khalifeh zadeh, "A General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification on Telegram," (in eng), Signal and Data Processing, Applicable vol. 19, no. 2, pp. 175-196, 2022. [DOI:10.52547/jsdp.19.2.175]
16. M. Imani and H. Ghassemian, "Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy," (in eng), Signal and Data Processing, Research vol. 16, no. 1, pp. 158-172, 2019. [DOI:10.29252/jsdp.16.1.158]
17. J. Zhang, C. Lu, X. Li, H.-J. Kim, and J. Wang, "A full convolutional network based on DenseNet for remote sensing scene classification," Mathematical Biosciences and Engineering, vol. 16, no. 5, pp. 3345-3367, 2019. [DOI:10.3934/mbe.2019167] [PMID]
18. H. Sun, S. Li, X. Zheng, and X. Lu, "Remote sensing scene classification by gated bidirectional network," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 1, pp. 82-96, 2019. [DOI:10.1109/TGRS.2019.2931801]
19. J. Xie, N. He, L. Fang, and A. Plaza, "Scale-free convolutional neural network for remote sensing scene classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6916-6928, 2019. [DOI:10.1109/TGRS.2019.2909695]
20. C. Shi, T. Wang, and L. Wang, "Branch feature fusion convolution network for remote sensing scene classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp 5194-5210, 2020. [DOI:10.1109/JSTARS.2020.3018307]
21. S.-C. Hung, H.-C. Wu, and M.-H. Tseng, "Remote sensing scene classification and explanation using RSSCNet and LIME," Applied Sciences, vol. 10, no. 18, p. 6151, 2020. [DOI:10.3390/app10186151]
22. X. Tang, Q. Ma, X. Zhang, F. Liu, J. Ma, and L. Jiao, "Attention consistent network for remote sensing scene classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 2030-2045, 2021. [DOI:10.1109/JSTARS.2021.3051569]
23. R. M. Anwer, F. S. Khan, and J. Laaksonen, "Compact deep color features for remote sensing scene classification," Neural Processing Letters, vol. 53, no. 2, pp. 1523-1544, 2021. [DOI:10.1007/s11063-021-10463-4]
24. T. Tian, L. Li, W. Chen, and H. Zhou, "SEMSDNet: A multiscale dense network with attention for remote sensing scene classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5501-5514, 2021. [DOI:10.1109/JSTARS.2021.3074508]
25. Q. Bi, H. Zhang, and K. Qin, "Multi-scale stacking attention pooling for remote sensing scene classification," Neurocomputing, vol. 436, pp. 147-161. 2021. [DOI:10.1016/j.neucom.2021.01.038]
26. S. Mei, K. Yan, M. Ma, X. Chen, S. Zhang, and Q. Du, "Remote sensing scene classification using sparse representation-based framework with deep feature fusion," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5867-5878, 2021. [DOI:10.1109/JSTARS.2021.3084441]
27. J. Shen, T. Zhang, Y. Wang, R. Wang, Q. Wang, and M. Qi, "A Dual-Model Architecture with Grouping-Attention-Fusion for Remote Sensing Scene Classification," Remote Sensing, vol. 13, no. 3, p. 433, 2021. [DOI:10.3390/rs13030433]
28. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248-255: Ieee. [DOI:10.1109/CVPR.2009.5206848]
29. B.-D. Liu, J. Meng, W.-Y. Xie, S. Shao, Y. Li, and Y. Wang, "Weighted spatial pyramid matching collaborative representation for remote-sensing-image scene classification," Remote Sensing, vol. 11, no. 5, p. 518, 2019. [DOI:10.3390/rs11050518]
30. B.-D. Liu, W.-Y. Xie, J. Meng, Y. Li, and Y. Wang, "Hybrid collaborative representation for remote-sensing image scene classification," Remote Sensing, vol. 10, no. 12, p. 1934, 2018. [DOI:10.3390/rs10121934]
31. Y. Liu, Y. Liu, and L. Ding, "Scene classification based on two-stage deep feature fusion," IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 2, pp. 183-186, 2017. [DOI:10.1109/LGRS.2017.2779469]
32. T. Gong, X. Zheng, and X. Lu, "Remote Sensing Scene Classification with Multi-task Learning," in Proceedings of the 7th China High Resolution Earth Observation Conference (CHREOC 2020), 2022, pp. 403-418: Springer. [DOI:10.1007/978-981-16-5735-1_30]
33. R. Cao, L. Fang, T. Lu, and N. He, "Self-attention-based deep feature fusion for remote sensing scene classification," IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 1, pp. 43-47, 2020. [DOI:10.1109/LGRS.2020.2968550]
34. Q. Bi, K. Qin, H. Zhang, Z. Li, and K. Xu, "RADC-Net: A residual attention based convolution network for aerial scene classification," Neurocomputing, vol. 377, pp. 345-359, 2020. [DOI:10.1016/j.neucom.2019.11.068]
35. K. Xu, H. Huang, Y. Li, and G. Shi, "Multilayer feature fusion network for scene classification in remote sensing," IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 11, pp. 1894-1898, 2020. [DOI:10.1109/LGRS.2019.2960026]
36. W. Zhang, P. Tang, and L. Zhao, "Remote sensing image scene classification using CNN-CapsNet," Remote Sensing, vol. 11, no. 5, p. 494, 2019. [DOI:10.3390/rs11050494]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.