دوره 22، شماره 2 - ( 6-1404 )                   جلد 22 شماره 2 صفحات 30-3 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi Moghadam M, nejatian S, Parvin H, Bagheri Fard K, Yagoubian S H. Solving dynamic optimization problems with an Improved Imperialis Competition Algorithm. JSDP 2025; 22 (2) : 1
URL: http://jsdp.rcisp.ac.ir/article-1-1394-fa.html
صادقی مقدم مهدی، نجاتیان صمد، پروین حمید، باقری فرد کرم الله، یعقوبیان سید هادی. حل مسائل بهینه‌‌سازی پویا با یک الگوریتم رقابت استعماری بهبودیافته. پردازش علائم و داده‌ها. 1404; 22 (2) :3-30

URL: http://jsdp.rcisp.ac.ir/article-1-1394-fa.html


دانشیار گروه مهندسی برق، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
چکیده:   (250 مشاهده)
مسائل بهینه‌سازی در بیشتر موارد با فرض ثابت‌بودن شرایط محیطی تعریف می‌شوند. بیشتر مسائل موجود در جهان واقعی محیط‌های به‌طور مداوم در حال تغییرند؛ بنابراین ما به الگوریتم‌های بهینه‌سازی نیاز داریم که بتوانند مسائل را در محیط‌های پویا به‌خوبی حل کنند. مسائل بهینه‌سازی پویا مسائلی هستند که در طول زمان دستخوش تغییر می‌شوند. چنین محیط‌هایی ویژگی‌هایی نظیر نبود ‌قطعیت، تغییرات زمانی و پیچیدگی‌های ساختاری را به همراه دارند که فرایند بهینه‌سازی را به چالشی جدی تبدیل می‌کند. در مواجهه با این چالش‌ها، الگوریتم‌های تکاملی از مؤثرترین روش‌ها برای حل مسائل بهینه‌سازی پویا (DOPs) مطرح شده‌اند. الگوریتم رقابت استعماری (ICA) که بر مبنای هوش ازدحامی و رقابت میان کشورهای استعمارگر طراحی شده‌است به‌دلیل توانایی در حل مسائل بهینه‌سازی ایستا مورد توجه ویژه قرار گرفته است؛ بااین‌حال، این الگوریتم در محیط‌های پویا عملکرد ضعیفی از خود نشان می‌دهد؛ زیرا فاقد مکانیسم‌هایی برای حفظ تنوع، تطبیق سریع با تغییرات محیطی و پیگیری نقاط بهینه جدید است. در این پژوهش، یک نسخه بهبود‌یافته از ICA با هدف غلبه بر محدودیت‌های مذکور ارائه شده‌است. در طراحی این الگوریتم، از ترکیب سازوکار حافظه و استراتژی خوشه‌بندی استفاده شده‌است. سازوکار حافظه اطلاعات نقاط بهینه گذشته را ذخیره کرده و در شرایط مناسب از این اطلاعات برای تسریع فرایند بهینه‌سازی استفاده می‌کند و استراتژی خوشه‌بندی k-means، به حفظ تنوع جمعیت کمک می‌کند و از انباشت راه‌حل‌ها در نواحی خاص جلوگیری می‌کند. این دو مؤلفه با یکدیگر، عملکرد الگوریتم در محیط‌های پویا را بهبود می‌بخشند. الگوریتم پیشنهادی در کنار الگوریتم‌های پیشرفته‌ای نظیر FTmPSO(TMO)، RAmQSO-s4، RmNAFSA-s4، TFTmPSO، RFTmPSO، mQSO10 (5+5q)، FMSO، CellularPSO، Multi-SwarmPSO، mCPSO، AmQSO*، FTMPSO، almPSO، و CDEPSA مورد ارزیابی قرار گرفت. نتایج تجربی نشان داد که الگوریتم پیشنهادی توانسته است، در زمینه‌هایی نظیر سرعت هم‌گرایی، تطبیق‌پذیری به تغییرات محیطی و حفظ تنوع جمعیت،
عملکردی برتر از سایر الگوریتم‌ها ارائه کند. از ویژگی‌های کلیدی الگوریتم پیشنهادی، توانایی در حفظ نقاط بهینه حتی پس از تغییر محیط و مقیاس‌پذیری آن در مواجهه با مسائل بهینه‌سازی پویا با ابعاد بزرگ و پیچیدگی‌های بالا است. استفاده از خوشه‌بندی k-means باعث شده‌است که الگوریتم در مواجهه با تغییرات پیچیده محیطی از تمرکز بیش‌ازحد بر روی نقاط خاص جلوگیری کرده و تنوع جمعیت را به ‌شکل مؤثری حفظ کند. این امر نشان می‌دهد که الگوریتم پیشنهادی نه تنها در محیط‌های آزمایشگاهی بلکه در کاربردهای واقعی با تغییرات سریع و پویا نیز کارآمد خواهد بود.
شماره‌ی مقاله: 1
متن کامل [PDF 4399 kb]   (131 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1402/6/10 | پذیرش: 1404/4/30 | انتشار: 1404/6/22 | انتشار الکترونیک: 1404/6/22

فهرست منابع
1. M. Mavrovouniotis, Ch. Li and S. Yang, "A survey of swarm intelligence for dynamic optimization: Algorithm and application", Swarm and Evolutionary Computation, Vol. 33, pp. 1-17, 2017. [DOI:10.1016/j.swevo.2016.12.005]
2. J. Branke. Evolutionary Optimization in Dynamic Environments. Springer US, 2002. [DOI:10.1007/978-1-4615-0911-0]
3. T. T. Nguyen, Z. Yang, and S. Bonsall. Dynamic time-linkage problems - the challenges. In Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pages 1-6. IEEE, 2012b. doi: 10.1109/rivf.2012.6169823. [DOI:10.1109/rivf.2012.6169823]
4. M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao. CBCC3 - a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In Evolutionary Computation (CEC), 2016 IEEE Congress on, pages 3541-3548. IEEE, 2016. [DOI:10.1109/CEC.2016.7744238]
5. G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. Wiley, 2015.
6. E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition," 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 4661-4667, doi: 10.1109/CEC.2007.4425083. [DOI:10.1109/CEC.2007.4425083]
7. H. Nakano, M. Kojima, and A. Miyauchi, "An artificial bee colony algorithm with a memory scheme for dynamic optimization problems," in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '15), pp. 2657-2663, IEEE, May 2015. [DOI:10.1109/CEC.2015.7257217]
8. T. Blackwell and J. Branke, "MultiswarmT Exclusion, and Anti-Convergence in Dynamic Environment", 2006. [DOI:10.1109/TEVC.2005.857074]
9. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation, 9(3):303-317, 2005. [DOI:10.1109/TEVC.2005.846356]
10. S. Yang, "Memory-based immigrants for genetic algorithms in dynamic environments," in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '05), pp. 1115-1122, ACM, June 2005. [DOI:10.1145/1068009.1068196] [PMID]
11. R. Vafashoar and M. R. Meybodi, "A multi-population differential evolution algorithm based on cellular learning automata and evolutionary context information for optimization in dynamic environments," Appl. Soft Comput., p. 106009, 2019. [DOI:10.1016/j.asoc.2019.106009]
12. M. Yasrebi, A. Eskandar-Baghban, H. Parvin, M. Mohammadpour, "Optimisation inspiring from behaviour of raining in nature: droplet optimisation algorithm," International Journal of Bio-Inspired Computation, vol. 12, no. 3, pp. 152-163, 2018. [DOI:10.1504/IJBIC.2018.094616]
13. D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang. A new multi swarm particle swarm optimization for robust optimization over time. In G. Squillero and K. Sim, editors, Applications of Evolutionary Computation, volume 10200, pages 99{109. Springer Lecture Notes in Computer Science, 2017. [DOI:10.1007/978-3-319-55792-2_7]
14. D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang. A new multi swarm particle swarm optimization for robust optimization over time. In G. Squillero and K. Sim, editors, Applications of Evolutionary Computation, volume 10200, pages 99-109. Springer Lecture Notes in Computer Science, 2017. [DOI:10.1007/978-3-319-55792-2_7]
15. D. Yazdani, T. T. Nguyen, and J. Branke. Robust optimization over time by learning problem space characteristics. IEEE Transactions on Evolutionary Computation, 2018a. [DOI:10.1109/TEVC.2018.2843566]
16. J. Branke, "Memory enhanced evolutionary algorithms for changing optimization problems," in Proc. Congr. Evol. Comput., vol. 3. 1999, pp. 1875-1882. [DOI:10.1109/CEC.1999.785502]
17. S. Yang, "Associative memory scheme for genetic algorithms in dynamic environments," in Proc. EvoWorkshops: Appl. Evol. Comput., LNCS 3907. 2006, pp. 788-799. [DOI:10.1007/11732242_76]
18. S. Yang, "Genetic algorithms with memory and elitism-based immigrants in dynamic environment," Evol. Comput., vol. 16, no. 3, pp. 385-416, 2008. [DOI:10.1162/evco.2008.16.3.385] [PMID]
19. J. Branke, "Memory enhanced evolutionary algorithms for changing optimization problems", In IEEE Congress on Evolutionary Computation, pages 1875-1882. IEEE, 1999. doi: 10.1109/CEC.1999.785502. [DOI:10.1109/CEC.1999.785502]
20. H., Parvin, S., Nejatian M., Mohammadpour, "Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic environments", Applied Intelligence, Volume 48 , V, 11., pages, 4317-4337, doi: https://doi.org/10.1007/s10489-018-1197-z [DOI:10.1007/s10489-018-1197-z, 2018.]
21. M. Mohammadpour, H. Parvin, M. Sina "Chaotic Genetic Algorithm based on Explicit Memory with a New Strategy for Updating and Retrieval of Memory in Dynamic Environments," In Journal of AI and Data Mining. (Vol 6, No 1), Pages, 191-205, 2018.
22. X. Chen, D. Zhang and X. Zeng, "Matching-Based Selection and Memory Enhanced MOEDA/D for Evolutionary Dynamic Multiobjective Optimization," Tools with Artificial intelligence (ICTAI), 2015 IEEE 27th International Conference on, pages 478 485. [DOI:10.1109/ICTAI.2015.77]
23. Yang S (2008) Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. Evol Comput 16(3):385 416. [DOI:10.1162/evco.2008.16.3.385] [PMID]
24. D. Yazdani., R. Cheng., D. Yazdani, J. Branke, Y. Jin., & X. Yao. A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades-Part A. In IEEE Transactions on Evolutionary Computation (Vol. 25, Issue 4, pp. 609-629). Institute of Electrical and Electronics Engineers (IEEE), 2021. https://doi.org/10.1109/TEVC.2021.3060014 [DOI:10.1109/tevc.2021.3060014.]
25. B. Niu, Q. Liu, and J. Wang, "Bacterial foraging optimization with memory and clone schemes for dynamic environments," in Advances in Swarm Intelligence, Y. Tan et al., Ed. Springer International Publishing, 2019, pp. 352-360. [DOI:10.1007/978-3-030-26369-0_33]
26. Y. Bravo, G. Luque, and E. Alba, "Global memory schemes for dynamic optimization," Natural Computing, vol. 15, no. 2, pp. 319-333, 2015. [DOI:10.1007/s11047-015-9497-2]
27. M. Moradi, S. Nejatian, H. Parvin and V. Rezaie, "CMCABC: Clustering and Memory-Based Chaotic Artificial Bee Colony Dynamic Optimization Algorithm", International Journal of Information Technology & Decision MakingVol. 17, No. 04, pp. 1007-1046, 2018. [DOI:10.1142/S0219622018500153]
28. Yang, S., and Li, C., "A General Framework of Multipopulation Methods with Clustering in Undetectable Dynamic Environments". IEEE Transactions on Evolutionary Computation, vol. 16, no. 4, pp. 556-577, 2012. [DOI:10.1109/TEVC.2011.2169966]
29. B. Niu, Q. Liu, and J. Wang, "Bacterial foraging optimization with memory and clone schemes for dynamic environments," in Advances in Swarm Intelligence, Y. Tan et al., Ed. Springer International Publishing, 2019, pp. 352-360. [DOI:10.1007/978-3-030-26369-0_33]
30. Y. Bravo, G. Luque, and E. Alba, "Global memory schemes for dynamic optimization," Natural Computing, vol. 15, no. 2, pp. 319-333, 2015. [DOI:10.1007/s11047-015-9497-2]
31. S. A. van der Stockt and A. P. Engelbrecht, "Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization," Swarm Evol. Comput., vol. 43, pp. 127-146, 2018. [DOI:10.1016/j.swevo.2018.03.012]
32. W. Zhang, M. Zhang, W. Zhang, Y. Meng, and H. Wu, "Innate-adaptive response and memory based artificial immune system for dynamic optimization," International Journal of Performability Engineering, vol. 14, no. 9, p. 2048, 2018. [DOI:10.23940/ijpe.18.09.p13.20482055]
33. W. Luo, J. Sun, C. Bu, and H. Liang, "Species-based particle swarm optimizer enhanced by memory for dynamic optimization," Appl. Soft Comput., vol. 47, pp. 130 - 140, 2016. [DOI:10.1016/j.asoc.2016.05.032]
34. T. Zhu, W. Luo, and L. Yue, "Combining multipopulation evolutionary algorithms with memory for dynamic optimization problems," in IEEE Congr. Evol. Comput. IEEE, 2014, pp. 2047-2054. [DOI:10.1109/CEC.2014.6900492]
35. J. K. Kordestani, A. E. Ranginkaman, M. R. Meybodi, and P. Novoa-Hernandez, "A novel framework for improving multi-population algorithms for dynamic optimization problems: A scheduling approach," Swarm Evol. Comput., vol. 44, pp. 788 - 805, 2019. [DOI:10.1016/j.swevo.2018.09.002]
36. Zhu, T., Luo, W., & Yue, L. (2014). Dynamic optimization facilitated by the memory tree. In Soft Computing (Vol. 19, Issue 3, pp. 547-566). Springer Science and Business Media LLC. https://doi.org/10.1007/s00500-014-1273-1 [DOI:10.1007/s00500-014-1273-1.]
37. Yang S (2008) Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. Evol Comput 16(3):385 416. [DOI:10.1162/evco.2008.16.3.385] [PMID]
38. Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput 12(5):542-561.Simöes A, Costa E (2007b) Variable-size memory evolutionary algorithm to deal with dynamic environments. In: Applications of evolutionary computing, vol. 4448. Springer, Berlin, pp 617-626. [DOI:10.1109/TEVC.2007.913070]
39. Tinós R, Yang S (2007) A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Gen Progr Evolv Mach 8(3):255-286. [DOI:10.1007/s10710-007-9024-z]
40. Urbanowicz RJ, Moore JH (2009) Learning classifier systems: a complete introduction, review, and roadmap. J Artif Evol Appl 2009. [DOI:10.1155/2009/736398]
41. S. Sadeghi, H. Parvin and F. Rad, "Particle Swarm Optimization for Dynamic Environments," in Springer International Publishing, 14th Mexican International Conference on Artificial intelligence, MICAI, 2015.
42. D. Yazdani, B. Nasiri, A. Sepas-Moghaddam and M. Meybodi, "a novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization," Applied Soft Computing, 2013. [DOI:10.1016/j.asoc.2012.12.020]
43. S. Kundu, D. Basu, and S. S. Chaudhuri, "Multipopulation-based differential evolution with speciation-based response to dynamic environments," in Swarm, Evolutionary, and Memetic Computing, B. K. Panigrahi et al., Ed. Springer International Publishing, 2013, pp. 222-235. [DOI:10.1007/978-3-319-03753-0_21]
44. Barlow GJ, Improving memory for optimization and learning in dynamic environments. Doctoral dissertation, Carnegie Mellon University, Pittsburgh, 2011.
45. J. K. Kordestani, A. Rezvanian, and M. R. Meybodi, "Cdepso: a bi-population hybrid approach for dynamic optimization problems," Applied Intelligence, vol. 40, no. 4, pp. 682-694, 2014. [DOI:10.1007/s10489-013-0483-z]
46. U. Halder, D. Maity, P. Dasgupta, and S. Das, "Self-adaptive cluster-based differential evolution with an external archive for dynamic optimization problems," in Swarm, Evolutionary, and Memetic Computing, B. K. Panigrahi et al., Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19-26. [DOI:10.1007/978-3-642-27172-4_3]
47. H. Wang, S. Yang, W. Ip, and D. Wang, "A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems," International Journal of Systems Science, vol. 43, no. 7, pp. 1268-1283, 2012. [DOI:10.1080/00207721.2011.605966]
48. R. Mukherjee, G. R. Patra, R. Kundu, and S. Das, "Cluster-based differential evolution with crowding archive for niching in dynamic environments," Inf. Sci., vol. 267, pp. 58 - 82, 2014. [DOI:10.1016/j.ins.2013.11.025]
49. W. Wu, D. Xie, and L. Liu, "Heterogeneous differential evolution with memory enhanced brownian and quantum individuals for dynamic optimization problems," International Journal of Pattern Recognition and Artificial Intelligence, vol. 32, no. 02, p. 1859003, 2018. [DOI:10.1142/S0218001418590036]
50. R. Vafashoar and M. R. Meybodi, "A multi-population differential evolution algorithm based on cellular learning automata and evolutionary context information for optimization in dynamic environments," Appl. Soft Comput., p. 106009, 2019. [DOI:10.1016/j.asoc.2019.106009]
51. D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang. A multi-objective time-linkage approach for dynamic optimization problems with previous-solution displacement restriction. In European Conference on the Applications of Evolutionary Computation. Lecture Notes in Computer Science, 2018b. [DOI:10.1007/978-3-319-77538-8_57]
52. D. Yazdani, B. Nasiri, R. Azizi, A. Sepas-Moghaddam, and M. R. Meybodi. Optimization in dynamic environments utilizing a novel method based on particle swarm optimization. International Journal of Artificial Intelligence, 11:170-192, 2013a.
53. D. Yazdani. "Particle swarm optimization for dynamically changing environments with particular focus on scalability and switching cost", Doctoral thesis, Liverpool John Moores University, (2018).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.