1. J. Zhou, Y. Zhang, and J. Cheng, "Preference-based mining of top-K influential nodes in social networks," Future Generation Computer Systems, vol. 31, pp. 40-47, 2014. [
DOI:10.1016/j.future.2012.06.011]
2. e. Mazaheri, a. Talebpour, and a. Rzaian, Identification Power Nodes in Social Networks Using Data Mining (no. 2). Tarbiat Modares University, 2021, pp. 161-182.
3. C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo, "Ublf: An upper bound based approach to discover influential nodes in social networks," in Data Mining (ICDM), 2013 IEEE 13th International Conference on, 2013, pp. 907-916: IEEE. [
DOI:10.1109/ICDM.2013.55] [
]
4. J. Scripps, "Discovering Influential Nodes in Social Networks through Community Finding," in WEBIST, 2013, pp. 403-412. [
DOI:10.5220/0004350704030412]
5. F. sharifzadeh, S. Kafi, and M. barari, "Providing a new method to identify active and influential nodes in social networks," presented at the National Conference of Computer Engineering and Information Technology Management, Tehran, 2004. Available: https://civilica.com/doc/282629
6. M. Richardson and P. Domingos, "Mining knowledge-sharing sites for viral marketing," in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 61-70: ACM. [
DOI:10.1145/775047.775057] [
PMID]
7. D. Kempe, J. M. Kleinberg, and É. Tardos, "Maximizing the Spread of Influence through a Social Network," Theory of computing, vol. 11, no. 4, pp. 105-147, 2015. [
DOI:10.4086/toc.2015.v011a004]
8. E. Mossel and S. Roch, "On the submodularity of influence in social networks," in Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, 2007, pp. 128-134: ACM. [
DOI:10.1145/1250790.1250811]
9. m. Abbaspour orangi and A. Hashemi golpayegani, "Identifying Influential Nodes to Diffuse the Trusting Behavior in Social Networks," (in eng), Signal and Data Processing, Research vol. 18, no. 2, pp. 57-74, 2021. [
DOI:10.52547/jsdp.18.2.57]
10. R. A. Formato, "Central force optimization: A new deterministic gradient-like optimization metaheuristic," Opsearch, vol. 46, no. 1, pp. 25-51, 2009. [
DOI:10.1007/s12597-009-0003-4]
11. K. Deb and H. Jain, "An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints," IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 577-601, 2014. [
DOI:10.1109/TEVC.2013.2281535]
12. P. Wang and R. Zhang, "A Multi-Objective Crow Search Algorithm for Influence Maximization in Social Networks," Electronics, vol. 12, no. 8, p. 1790, 2023. [
DOI:10.3390/electronics12081790]
13. I. Lozano-Osorio, J. Sanchez-Oro, A. Duarte, and Ó. Cordón, "A quick GRASP-based method for influence maximization in social networks," Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 4, pp. 3767-3779, 2023. [
DOI:10.1007/s12652-021-03510-4]
14. C. Wang, J. Zhao, L. Li, L. Jiao, J. Liu, and K. Wu, "A multi-transformation evolutionary framework for influence maximization in social networks," IEEE Computational Intelligence Magazine, vol. 18, no. 1, pp. 52-67, 2023. [
DOI:10.1109/MCI.2022.3222050]
15. T. K. Biswas, A. Abbasi, and R. K. Chakrabortty, "An improved clustering based multi-objective evolutionary algorithm for influence maximization under variable-length solutions," Knowledge-Based Systems, vol. 256, p. 109856, 2022. [
DOI:10.1016/j.knosys.2022.109856]
16. R. Olivares, F. Muñoz, and F. Riquelme, "A multi-objective linear threshold influence spread model solved by swarm intelligence-based methods," Knowledge-Based Systems, vol. 212, p. 106623, 2021. [
DOI:10.1016/j.knosys.2020.106623]
17. A. Sheikhahmadi and A. Zareie, "Identifying influential spreaders using multi-objective artificial bee colony optimization," Applied Soft Computing, vol. 94, p. 106436, 2020. [
DOI:10.1016/j.asoc.2020.106436]
18. A. Mohammadi and M. Saraee, "Finding influential users for different time bounds in social networks using multi-objective optimization," Swarm and evolutionary computation, vol. 40, pp. 158-165, 2018. [
DOI:10.1016/j.swevo.2018.02.003]
19. J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, and X. Liu, "A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks," Knowledge-Based Systems, vol. 187, p. 104833, 2020. [
DOI:10.1016/j.knosys.2019.07.004]
20. D. Bucur, G. Iacca, A. Marcelli, G. Squillero, and A. Tonda, "Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks," in European Conference on the Applications of Evolutionary Computation, 2017, pp. 221-233: Springer. [
DOI:10.1007/978-3-319-55849-3_15]
21. M. Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, "Influence maximization in social networks based on discrete particle swarm optimization," Information Sciences, vol. 367, pp. 600-614, 2016. [
DOI:10.1016/j.ins.2016.07.012]
22. D. Li, C. Wang, S. Zhang, G. Zhou, D. Chu, and C. Wu, "Positive influence maximization in signed social networks based on simulated annealing," Neurocomputing, 2017. [
DOI:10.1016/j.neucom.2017.03.003]
23. K. Zhang, H. Du, and M. W. Feldman, "Maximizing influence in a social network: Improved results using a genetic algorithm," Physica A: Statistical Mechanics and its Applications, vol. 478, pp. 20-30, 2017. [
DOI:10.1016/j.physa.2017.02.067]
24. M. Weskida and R. Michalski, "Evolutionary algorithm for seed selection in social influence process," in Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Conference on, 2016, pp. 1189-1196: IEEE. [
DOI:10.1109/ASONAM.2016.7752390]
25. Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, "Simulated Annealing Based Influence Maximization in Social Networks," in AAAI, 2011, vol. 11, pp. 127-132. [
DOI:10.1609/aaai.v25i1.7838]
26. D. Bucur and G. Iacca, "Influence maximization in social networks with genetic algorithms," in European Conference on the Applications of Evolutionary Computation, 2016, pp. 379-392: Springer. [
DOI:10.1007/978-3-319-31204-0_25]
27. Y. Gui-sheng, W. Ji-jie, D. Hong-bin, and L. Jia, "Intelligent Viral Marketing algorithm over online social network," in Networking and Distributed Computing (ICNDC), 2011 Second International Conference on, 2011, pp. 319-323: IEEE. [
DOI:10.1109/ICNDC.2011.69]
28. C.-W. Tsai, Y.-C. Yang, and M.-C. Chiang, "A Genetic NewGreedy Algorithm for Influence Maximization in Social Network," in Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on, 2015, pp. 2549-2554: IEEE. [
DOI:10.1109/SMC.2015.446]
29. J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020. [
DOI:10.1016/j.aiopen.2021.01.001]
30. W. Liu, S. Wang, and J. Ding, "Influence Maximization Based on Adaptive Graph Convolution Neural Network in Social Networks," Electronics, vol. 13, no. 16, p. 3110, 2024. [
DOI:10.3390/electronics13163110]
31. X. Zhang and W. Xie, "Social network influence maximization based on graph attention mechanisms," in 2024 9th International Conference on Electronic Technology and Information Science (ICETIS), 2024, pp. 543-548: IEEE. [
DOI:10.1109/ICETIS61828.2024.10593670]
32. Y. Wang, P. Li, and W. Huang, "Influence Maximization With Graph Neural Network in Multi-Feature Social Network," in 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 2022, pp. 1751-1756: IEEE. [
DOI:10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00264]
33. E. Yanchenko, T. Murata, and P. Holme, "Influence maximization on temporal networks: a review," Applied Network Science, vol. 9, no. 1, p. 16, 2024. [
DOI:10.1007/s41109-024-00625-3]
34. C. C. Aggarwal, "An introduction to social network data analytics," Social network data analytics, pp. 1-15, 2011. [
DOI:10.1007/978-1-4419-8462-3_1]
35. M. E. Newman, "Spread of epidemic disease on networks," Physical review E, vol. 66, no. 1, p. 016128, 2002. [
DOI:10.1103/PhysRevE.66.016128] [
PMID]
36. D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing the spread of influence through a social network," in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003, pp. 137-146: ACM. [
DOI:10.1145/956750.956769]
37. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002. [
DOI:10.1109/4235.996017]
38. A. P. Engelbrecht, Computational intelligence: an introduction., 2 ed. England: John Wiley & Sons, 2007, p. 597. [
DOI:10.1002/9780470512517]
39. E. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," International journal of human-computer studies, vol. 51, no. 2, pp. 135-147, 1999. [
DOI:10.1006/ijhc.1973.0303]
40. M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, "The anatomy of a scientific rumor," Scientific reports, vol. 3, no. 1, p. 2980, 2013. [
DOI:10.1038/srep02980] [
PMID] [
]
41. J. Kunegis, A. Lommatzsch, and C. Bauckhage, "The slashdot zoo: mining a social network with negative edges," in Proceedings of the 18th international conference on World wide web, 2009, pp. 741-750. [
DOI:10.1145/1526709.1526809]