دوره 21، شماره 4 - ( 1-1404 )                   جلد 21 شماره 4 صفحات 112-97 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghparast D, Fotouhi A M. Fatigue and drowsiness detection of the car driver based on image processing and artificial intelligence on the mobile phone. JSDP 2025; 21 (4) : 7
URL: http://jsdp.rcisp.ac.ir/article-1-1377-fa.html
حق پرست دانیال، فتوحی علی محمد. تشخیص خستگی و خواب‌آلودگی راننده خودرو مبتنی بر پردازش تصویر و هوش مصنوعی بر روی گوشی تلفن همراه. پردازش علائم و داده‌ها. 1404; 21 (4) :97-112

URL: http://jsdp.rcisp.ac.ir/article-1-1377-fa.html


استادیار دانشکده مهندسی برق، دانشگاه تفرش، تفرش، ایران
چکیده:   (311 مشاهده)

یکی از عوامل تأثیرگذار در سوانح رانندگی، خستگی و خواب‌­آلودگی راننده است. در این مقاله با استفاده از تشخیص چهره و حالت چشم راننده مبتنی بر پردازش تصویر و هوش مصنوعی، خواب‌­آلودگی راننده تشخیص و اعلام خطر صوتی مناسب به منظور بیدارکردن راننده صادر می­‌شود. روش پیشنهادی بر روی گوشی تلفن همراه راننده و تنها با استفاده از امکانات گوشی شامل پردازنده، دوربین و اعلام خطر صوتی اجرا شده‌است و نیاز به سخت‌­افزار اضافه در خودرو ندارد. در الگوریتم پیشنهادی به منظور تشخیص چهره از روش سریع و کارای هار-کسکید استفاده شده‌است. به منظور تسریع بیشتر الگوریتم، در این مقاله با ترکیب دو مرحله تشخیص چشم و تشخیص حالت چشم، از روش هار-کسکید برای تشخیص چشم باز در ناحیه چهره استفاده شده‌است. الگوریتم پیشنهادی، برخلاف الگوریتم‌های متعدد و پیشرفته موجود، از جمله الگوریتم‌های مبتنی بر یادگیری عمیق، ضمن دارابودن دقت لازم، هزینه محاسباتی پایینی دارد و می‌توان آن را بلادرنگ بر روی انواع تلفن‌های همراه هوشمند پیاده‌سازی کرد. برای آموزش و افزایش دقت عملکرد الگوریتم پیشنهادی، پایگاه داده­ای از پانصد تصویر مناسب در وضعیت­های مختلف رانندگی تهیه شده و به‌کار رفته‌است. بررسی نتایج تجربی بر روی بیست ویدئوی آزمایشی، که در شرایط مختلف واقعی رانندگی و بدون استفاده از شبیه­‌ساز تهیه شده‌است، نشان‌­دهنده عملکرد مناسب سیستم طراحی‌شده با ایجاد ۹۵٪ از هشدارهای مورد انتظار است.

شماره‌ی مقاله: 7
متن کامل [PDF 1369 kb]   (136 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1402/2/6 | پذیرش: 1403/9/14 | انتشار: 1404/1/13 | انتشار الکترونیک: 1404/1/13

فهرست منابع
1. امیری, م. و همکاران، «بررسى نقش عامل خستگى در رانندگى و ارائه راهکارهاى مناسب»، نشریة راهور، ۱۳۹۱(۱۸): ص. ۵۳-۶۶.
2. Riztiane, A., et al. Driver drowsiness detection using visual information on android device. in 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). 2017. IEEE. [DOI:10.1109/ICSIIT.2017.20]
3. Sikander, G. and S. Anwar, Driver fatigue detection systems: A review. IEEE Transactions on Intelligent Transportation Systems, 2018. 20(6): p. 2339-2352. [DOI:10.1109/TITS.2018.2868499]
4. Xiao, Y. and A. bin Abas, A review on fatigue driving detection. ASP Transactions on Internet of Things, 2021. 1(3): p. 1-14.
5. Martinez-Maradiaga, D. and G. Meixner. Morpheus alert: A smartphone application for preventing microsleeping with a brain-computer-interface. in 2017 4th International Conference on Systems and Informatics (ICSAI). 2017. IEEE. [DOI:10.1109/ICSAI.2017.8248278]
6. افضل, ز.ر.، «طراحی یک سیستم هشدار انحراف ازجاده و پیاده¬سازی آن بر روی تبلت با سیستم عامل اندروید»، 1390، پایان‌نامة کارشناسی‌ارشد، دانشگاه صنعتی اصفهان.
7. Dasgupta, A., et al., A vision-based system for monitoring the loss of attention in automotive drivers. IEEE Transactions on Intelligent Transportation Systems, 2013. 14(4): p. 1825-1838. [DOI:10.1109/TITS.2013.2271052]
8. Sun, Z., et al., Facial feature fusion convolutional neural network for driver fatigue detection. Engineering Applications of Artificial Intelligence, 2023. 126: p. 106981. [DOI:10.1016/j.engappai.2023.106981]
9. Li, X., et al., Driver fatigue detection based on improved YOLOv7. Journal of Real-Time Image Processing, 2024. 21(3): p. 75. [DOI:10.1007/s11554-024-01455-3]
10. Fuletra, J.D. and D. Bosamiya, A survey on drivers drowsiness detection techniques. International Journal on Recent and Innovation Trends in Computing and Communication, 2013. 1(11): p. 816-819.
11. Shi, S.-Y., W.-Z. Tang, and Y.-Y. Wang. A review on fatigue driving detection. in ITM Web of Conferences. 2017. EDP Sciences. [DOI:10.1051/itmconf/20171201019]
12. Lu, Y., et al., JHPFA-Net: Joint head pose and facial action network for driver yawning detection across arbitrary poses in videos. IEEE Transactions on Intelligent Transportation Systems, 2023. [DOI:10.1109/TITS.2023.3285923]
13. Yang, C., X. Wang, and S. Mao, Unsupervised drowsy driving detection with RFID. IEEE transactions on vehicular technology, 2020. 69(8): p. 8151-8163. [DOI:10.1109/TVT.2020.2995835]
14. Qiao, Y., et al. A smartphone-based driver fatigue detection using fusion of multiple real-time facial features. in 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC). 2016. IEEE. [DOI:10.1109/CCNC.2016.7444761]
15. Li, K., Y. Gong, and Z. Ren, A fatigue driving detection algorithm based on facial multi-feature fusion. IEEE Access, 2020. 8: p. 101244-101259. [DOI:10.1109/ACCESS.2020.2998363]
16. Zhao, G., et al., Research on fatigue detection based on visual features. IET Image Processing, 2022. 16(4): p. 1044-1053. [DOI:10.1049/ipr2.12207]
17. Lee, B.-G. and W.-Y. Chung, A smartphone-based driver safety monitoring system using data fusion. Sensors, 2012. 12(12): p. 17536-17552. [DOI:10.3390/s121217536] [PMID] []
18. Min, J., et al., Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline. Neural Computing and Applications, 2023. 35(12): p. 8859-8872. [DOI:10.1007/s00521-022-07466-0] [PMID]
19. Galarza, E.E., et al. Real time driver drowsiness detection based on driver's face image behavior using a system of human computer interaction implemented in a smartphone. in Proceedings of the International Conference on Information Technology & Systems (ICITS 2018). 2018. Springer. [DOI:10.1007/978-3-319-73450-7_53]
20. Viola, P. and M. Jones. Rapid object detection using a boosted cascade of simple features. in Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. 2001. Ieee.
21. Face Detection with Haar Cascade. Available from: https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08.
22. Wang, Y.-Q., An analysis of the Viola-Jones face detection algorithm. Image Processing On Line, 2014. 4: p. 128-148. [DOI:10.5201/ipol.2014.104]
23. Ramzan, M., et al., A survey on state-of-the-art drowsiness detection techniques. IEEE Access, 2019. 7: p. 61904-61919. [DOI:10.1109/ACCESS.2019.2914373]
24. Lienhart, R., A. Kuranov, and V. Pisarevsky. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. in Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, September 10-12, 2003. Proceedings 25. 2003. Springer.
25. Herrera-Granda, E.P., et al. Drowsiness detection in drivers through real-time image processing of the human eye. in Intelligent Information and Database Systems: 11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, April 8-11, 2019, Proceedings, Part I 11. 2019. Springer.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.