1. "https://data.worldbank.org/indicator/SH.MED.PHYS.ZS." Accessed: Nov. 04, 2022. [Online]. Available: https://data.worldbank.org/indicator/SH.MED.PHYS.ZS
2. B. Rahimi, H. Nadri, H. L. Afshar, and T. Timpka, "A systematic review of the technology acceptance model in health informatics," Appl Clin Inform, vol. 9, no. 03, pp. 604-634, 2018. [
DOI:10.1055/s-0038-1668091]
3. M. E. Basiri, S. Nemati, M. Abdar, S. Asadi, and U. R. Acharrya, "A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets," Knowl Based Syst, vol. 228, 2021, doi: 10.1016/j.knosys.2021.107242. [
DOI:10.1016/j.knosys.2021.107242]
4. A. Garg and V. Mago, "Role of machine learning in medical research: A survey," Comput Sci Rev, vol. 40, p. 100370, 2021. [
DOI:10.1016/j.cosrev.2021.100370]
5. [A. Barragán-Montero et al., "Artificial intelligence and machine learning for medical imaging: A technology review," Physica Medica, vol. 83, pp. 242-256, 2021. [
DOI:10.1016/j.ejmp.2021.04.016]
6. U. Kamath, J. Liu, and J. Whitaker, Deep learning for NLP and speech recognition, vol. 84. Cham, Switzerland: Springer, 2019. [
DOI:10.1007/978-3-030-14596-5]
7. M. Tsuneki, "Deep learning models in medical image analysis," Journal of Oral Biosciences, vol. 64, no. 3, pp.312-320, 2022. [
DOI:10.1016/j.job.2022.03.003]
8. S. Dong, P. Wang, and K. Abbas, "A survey on deep learning and its applications," Comput Sci Rev, vol. 40, p. 100379, 2021. [
DOI:10.1016/j.cosrev.2021.100379]
9. R. Sun et al., "Survey of Image Edge Detection," Frontiers in Signal Processing, vol. 2, p. 826967, 2022. [
DOI:10.3389/frsip.2022.826967]
10. F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, "Breast cancer histopathological image classification using convolutional neural networks," in 2016 international joint conference on neural networks (IJCNN), pp. 2560-2567, 2016. [
DOI:10.1109/IJCNN.2016.7727519]
11. [X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Front Comput Sci, vol. 14, no. 2, pp. 241-258, 2020. [
DOI:10.1007/s11704-019-8208-z]
12. M. A. Ganaie, M. Hu, and others, "Ensemble deep learning: A review," Engineering Applications of Artificial Intelligence, vol. 115, p.105151, 2021. [
DOI:10.1016/j.engappai.2022.105151]
13. A. S. Kini et al., "Ensemble deep learning and internet of things-based automated COVID-19 diagnosis framework," Contrast Media Mol Imaging, vol. 2022, 2022. [
DOI:10.1155/2022/7377502]
14. A. K. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, and A. Chakrabarti, "Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network," Pattern Analysis and Applications, vol. 24, no. 3, pp. 1111-1124, 2021. [
DOI:10.1007/s10044-021-00970-4]
15. [M. Dildar et al., "Skin cancer detection: a review using deep learning techniques," Int J Environ Res Public Health, vol. 18, no. 10, p. 5479, 2021. [
DOI:10.3390/ijerph18105479]
16. M. A. Kassem, K. M. Hosny, and M. M. Fouad, "Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning," IEEE Access, vol. 8, pp. 114822-114832, 2020. [
DOI:10.1109/ACCESS.2020.3003890]
17. S. Kalouche, A. Ng, and J. Duchi, "Vision-based classification of skin cancer using deep learning," 2015, conducted on Stanfords Machine Learning course (CS 229) taught, 2016.
18. A. Sagar and D. Jacob, "Convolutional neural networks for classifying melanoma images," bioRxiv, pp. 2020-2025, 2021. [
DOI:10.1101/2020.05.22.110973]
19. "Skin Cancer: Malignant vs Benign, Kaggle," Skin Cancer: Malignant vs Benign, Kaggle,. Accessed: Jan. 01, 2022. [Online]. Available: https:// kaggle.com/datasets/fanconic/skin-cancer-malignant-vsbenign
20. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
21. K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in European conference on computer vision, pp. 630-645, 2016. [
DOI:10.1007/978-3-319-46493-0_38]
22. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826, 2016. [
DOI:10.1109/CVPR.2016.308]
23. M. Al-Sarem, F. Saeed, W. Boulila, A. H. Emara, M. Al-Mohaimeed, and M. Errais, "Feature selection and classification using CatBoost method for improving the performance of predicting Parkinson's disease," in Advances on Smart and Soft Computing, Springer, pp. 189-199, 2021. [
DOI:10.1007/978-981-15-6048-4_17]
24. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, "CatBoost: unbiased boosting with categorical features," Adv Neural Inf Process Syst, vol. 31, 2018.
25. A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc., 2022.
26. فروتن راد جواد، حورعلی مریم، کیوان راد محمدعلی، «دادگان پرسشوپاسخ زبان فارسی»، پردازش علائم و دادهها، ۲۰ (۴)، صفحات ۱۰۷-۱۲۰، 1402.