1. Number of Smartphone and Mobile Phone Users Worldwide in 2022/2023: Demographics, Statistics, Predictions. https:// financesonline.com/number-of-smartphone-users-worldwide/. Accessed: 2022-August-16.
2. Google Play: number of available apps by quarter 2022 - Statista. https://www.statista.com/statistics/289418/ number-of-available-apps-in-the-google-play-store-quarter. Accessed: 2022-August-16.
3. O. N. Elayan, A. M. Mustafa, "Android Malware Detection Using Deep Learning, " Procedia Computer Science., vol. 184, pp. 847-852. [
DOI:10.1016/j.procs.2021.03.106]
4. M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, "DL-Droid: Deep learning based android malware detection using real devices, " Computers & Security 89 (2020) 101663, vol. 89, February 2020. [
DOI:10.1016/j.cose.2019.101663]
5. Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, "Droid-Sec: Deep learning in android malware detection, " ACM SIGCOMM Computer Communication Review, vol. 44, pp. 371-372, August 2014. [
DOI:10.1145/2740070.2631434]
6. S. Hou, A. Saas, L. Chen, and Y. Ye, "Deep4MalDroid: A deep learning framework for android malware detection based on Linux kernel system call graphs, " Proc. - 2016 IEEE/WIC/ACM Int. Conf. Web Intell. Work. WIW 2016, 2016, pp. 104-111. [
DOI:10.1109/WIW.2016.040] [
]
7. M. Deypir, A. Horri, "Instance based security risk value estimation for Android applications, " Journal of Information Security and Applications, vol. 40, pp. 20-30, June 2018. [
DOI:10.1016/j.jisa.2018.02.002]
8. K. Tam, S. J. Khan, A. Fattori, et al. "CopperDroid: Automatic Reconstruction of Android Malware Behaviors, " Systems Security Research Lab and Information Security Group Royal Holloway University of London, 2015, pp. 1-15. [
DOI:10.14722/ndss.2015.23145]
9. M. Qiao, A. H. Sung, Q. Liu, "Merging Permission and API Features for Android Malware Detection, " 5th IIAI International Congress on Advanced Applied Informatics, DOI 10.1109/ IIAI-AAI.2016.237, 2016, pp. 566-571. [
DOI:10.1109/IIAI-AAI.2016.237]
10. L. Wen, and H. Yu, "An Android Malware Detection System Based on Machine Learning, " AIP Conference Proceedings 1864, 020136-1-020136-7, 2017. [
DOI:10.1063/1.4992953]
11. A. Pektas¸ and T. Acarman. "Deep learning for effective android malware detection using api call graph embeddings, " Soft Computing, vol. 24, pp. 1027-1043, January 2020. [
DOI:10.1007/s00500-019-03940-5]
12. S.Y.Yerima, S. Sezer, and I. Muttik, "Android malware detection using parallel machine learning classifiers, " 8th International Conference on Next Generation Mobile Applications, Services and Technologies, 2024.
13. Z.Qin, Y. Xu, B. Liang, et al. "An Android malware static detection method, " Journal of Southeast University, vol, 43, pp. 1162-1167, 2013.
14. Y. Qiao, Y. Yang, J. He, et al, "CBM: Free, Automatic Malware Analysis Framework Using API Call Sequences, " Advances in Intelligent Systems and Computing 214, DOI: 10.1007/978-3-642-37832-4_21, Springer-Verlag Berlin Heidelberg, 2034, pp.225-236. [
DOI:10.1007/978-3-642-37832-4_21]
15. G. He, B. Xu, L. Zhang, and H. Zhu, "On-Device Detection of Repackaged Android Malware via Traffic Clustering, " Security and Communication Networks, vol. 2020, pp. 1-19, May 2020. [
DOI:10.1155/2020/8630748]
16. L. Xiao, Y. Li, X. Huangy, X. J. Du, "Cloud-based Malware Detection Game for Mobile Devices with Offloading, " IEEE Transactions on Mobile Computing, vol. 16, pp. 2742 - 2750, October 2017. [
DOI:10.1109/TMC.2017.2687918]
17. A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah, "Android malware detection based on network traffic using decision tree algorithm, " in Proceedings of the International Conference on Soft Computing and Data Mining, Springer, Senai, Malaysia, January 2018 pp. 485-494,. [
DOI:10.1007/978-3-319-72550-5_46]
18. V. Cardellini, V. De Nito Person'e, V. Di Valerio, et al, "A gametheoretic approach to computation offloading in mobile cloud computing, " Springer Mathematical Programming, vol. 157, pp. 421-449, June 2016. [
DOI:10.1007/s10107-015-0881-6]
19. Y. Wang, X. Lin, and M. Pedram, "A Bayesian game formulation of power dissipation and response time minimization imobile cloud computing system, " in Proc. IEEE Int'l Conf. Mobile Services, pp. 7 - 14, June 2013.
20. F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos, A. Leivadeas, N. Athanasopoulos, N. Mitton, S. Papavassiliou, "Task Offloading in Edge and Cloud Computing: A Survey on Mathematical, Artificial Intelligence and Control Theory Solution, " Journal Pre-proof, May 2021 Computer Networks 195(3):108177., vol. 195, August 2021. [
DOI:10.1016/j.comnet.2021.108177]
21. Deypir M. RiskMeter: "A Tool for Measuring Precise Security Risk Values of Mobile Device Applications, " Signal and Data Processing., vol. 14, pp. 23-36, December 2017. [
DOI:10.29252/jsdp.14.3.23]
22. H. Li, et.al. "MalCertain: Enhancing Deep Neural Network Based Android Malware Detection by Tackling Prediction UncertaintyICSE," 24: Proceedings of the IEEE/ACM 46th International Conference on Software EngineeringMay, 2024. pp 1-13. [
DOI:10.1145/3597503.3639122]
23. P.Irolla1, A. Dey, "The duplication issue within the Drebin dataset, " Journal of Computer Virology and Hacking Techniques., vol. 14, pp. 245-249, August 2018. [
DOI:10.1007/s11416-018-0316-z]
24. D.Arp, M.Spreitzenbarth, M.Hubner, H.Gascon, K.Rieck, "DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket, " Conference Network and Distributed System Security Symposium (NDSS), February 2014. [
DOI:10.14722/ndss.2014.23247]
25. S. Garg, S. K. Peddoju, A. K. Sarje, "Network-based detection of Android malicious apps, " International Journal of Information Security., vol. 456, pp. 629-636, October 2021.
26. R. Jusoh, A. Firdaus, S. Anwar, et.al. "Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation), " PeerJ Comput. Sci.7 :e522, DOI 10.7717/peerj-cs.522, June 2021. [
DOI:10.7717/peerj-cs.522] [
PMID] [
]