دوره 21، شماره 3 - ( 10-1403 )                   جلد 21 شماره 3 صفحات 178-149 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan Pour Askari A, Khatibi Bardsiri A, Mohammadi Ghanat Ghestani M. IoT privacy for the transmission of data in the field of health using blockchain. JSDP 2024; 21 (3) : 8
URL: http://jsdp.rcisp.ac.ir/article-1-1314-fa.html
حسن پورعسکری عباس، خطیبی بردسیری عمید، محمدی قنات غستانی مختار. حفظ حریم خصوصی در اینترنت اشیا برای انتقال داده‌ها در حوزه سلامت با استفاده از زنجیره بلوکی. پردازش علائم و داده‌ها. 1403; 21 (3) :149-178

URL: http://jsdp.rcisp.ac.ir/article-1-1314-fa.html


استادیار گروه کامپیوتر، دانشگاه آزاد اسلامی واحد بردسیر، بردسیر، ایران
چکیده:   (397 مشاهده)
استفاده از زنجیره بلوکی در حفظ حریم خصوصی افراد موضوعی است که توانسته است نظرات پژوهش‌گران را به خود جلب کند و نیازمندی بسیار مهمی در سیستم­‌های اطلاعاتی و داده­ای به شمار می‌آید. از طرفی سیستم سلامت پزشکی با توجه به حساسیتهای موجود در حفظ اطلاعات بیماران و افراد درگیر در سلامت پزشکی مانند پزشکان و پرستاران، دارای زمینه مساعدی برای به‌کارگیری سیستم قدرتمند زنجیره بلوکی برای حفظ حریم خصوصی است. در پژوهش حاضر بر حفظ محرمانگی داده‌های سلامت پزشکی در اینترنت اشیا مبتنی بر ابر با استفاده از زنجیره بلوکی و محاسبات لبه تأکید میشود به گونه‌­ای که این روش بتواند محرمانگی دادهها در این محیطها و بسترهای پزشکی را بهویژه برای بیماران تحت مراقبت به شکل مطلوب فراهم آورد. ذخیره داده‌­های پزشکی با این فناوری در پاسخ به نیازمندی هم‌زمان کارایی سیستم و حفظ محرمانگی پیشنهاد شده‌است. به‌طور مشخص این روش از طریق بهره‌گیری از احراز هویت با روش نامتقارن در لبه ابر و تبادل کلید دیفی-هلمن برای موارد ناشناس‌بودن، استفاده از زنجیره بلوکی و پیرو آن درهم‌سازی SHA2 و رمزنگاری PKI سعی در ایجاد بستری با امنیت و بهویژه حریم خصوصی بالا جهت کاربردهای مراقبت پزشکی کرده‌است؛ این سیستم در ادامه شبیه­‌سازی و نشان داده شده‌است که می‌­تواند در سیستم سلامت پزشکی بر روی ترکیب ابر-اینترنت اشیا از منظر عملکردی تأثیر مناسبی داشته باشد. مطابق نتایج با اجرای روش، از نظر نقض SLA سیستم در شرایطی قرار می‌گیرد که حتی در صورت حمله نقض SLA وجود نداشته باشد و کارایی حفظ شود؛ همچنین درصد دستیابی به اطلاعات مفید توسط هکر نزدیک به صفر خواهد بود. با جلوگیری از ورود گرههای مخرب گذردهی حدود 30 درصد افزایش نشان می­‌دهد. همچنین در مقایسه با برخی روش­‌های دیگر که در سال‌های اخیر توسط پژوهش‌گران ارائه شده‌­اند، خنثی‌سازی مهاجمان موجب بهبود حداقل 5 درصدی در کارایی سیستم می­‌شود. از دیگر محاسن این روش انعطاف‌­پذیری و مقیاس‌­پذیری بالا، مقاومبودن، زمان اجرای مناسب و تأخیر کمابیش پایین است که به­‌واسطه استفاده از ابر لبه بهوجود می‌­آید.
شماره‌ی مقاله: 8
متن کامل [PDF 2342 kb]   (180 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه امنیت اطلاعات
دریافت: 1401/3/10 | پذیرش: 1403/3/12 | انتشار: 1403/10/28 | انتشار الکترونیک: 1403/10/28

فهرست منابع
1. X. Wang, L. Bai, Q. Yang, L. Wang, and F. Jiang, "A dual privacy-preservation scheme for cloud-based eHealth systems," Journal of Information Security and Applications, vol. 47, pp. 132-138, 2019. [DOI:10.1016/j.jisa.2019.04.010]
2. M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, "Blockchain leveraged decentralized IoT eHealth framework," Internet of Things, vol. 9, p. 100159, 2020. [DOI:10.1016/j.iot.2020.100159]
3. R. Duan, M. R. Boland, Z. Liu, Y. Liu, H. H. Chang, H. Xu, H. Chu, et al., "Learning from electronic health records across multiple sites: A communication-efficient and privacy-preserving distributed algorithm," Journal of the American Medical Informatics Association, vol. 27, no. 3, pp. 376-385, 2020. [DOI:10.1093/jamia/ocz199] [PMID] []
4. A. Majeed, "Attribute-centric anonymization scheme for improving user privacy and utility of publishing e-health data," Journal of King Saud University-Computer and Information Sciences, vol. 31, no. 4, pp. 426-435, 2019. [DOI:10.1016/j.jksuci.2018.03.014]
5. A. Donawa, I. Orukari, and C. E. Baker, "Scaling blockchains to support electronic health record systems for hospitals," arXiv preprint arXiv:2001.05525, 2020.
6. A. Zhang and X. Lin, "Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain," Journal of Medical Systems, vol. 42, no. 8, p. 140, 2018. [DOI:10.1007/s10916-018-0995-5] [PMID]
7. A. Botta, W. De Donato, V. Persico, and A. Pescapé, "Integration of cloud computing and internet of things: A survey," Future Generation Computer Systems, vol. 56, pp. 684-700, 2016. [DOI:10.1016/j.future.2015.09.021]
8. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, "Sensing as a service model for smart cities supported by internet of things," Transactions on Emerging Telecommunications Technologies, vol. 25, no. 1, pp. 81-93, 2014. [DOI:10.1002/ett.2704]
9. A. Shahnaz, U. Qamar, and A. Khalid, "Using blockchain for electronic health records," IEEE Access, vol. 7, pp. 147782-147795, 2019. [DOI:10.1109/ACCESS.2019.2946373]
10. D. Gachet, M. de Buenaga, F. Aparicio, and V. Padrón, "Integrating internet of things and cloud computing for health services provisioning: The virtual cloud carer project," in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 918-921. IEEE, 2012. [DOI:10.1109/IMIS.2012.25]
11. Y. Zhang, M. Qiu, C.-W. Tsai, M. M. Hassan, and A. Alamri, "Health-CPS: Healthcare cyber-physical system assisted by cloud and big data," IEEE Systems Journal, vol. 11, no. 1, pp. 88-95, 2015. [DOI:10.1109/JSYST.2015.2460747]
12. N. Alharbe, A. S. Atkins, and J. Champion, "Use of cloud computing with wireless sensor networks in an Internet of Things environment for a smart hospital network," in Proceedings of the Seventh International Conference on eHealth, Telemedicine, and Social Medicine, Lisbon, Portugal, pp. 22-27, 2015.
13. J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, H. Jin, and L. T. Yang, "Cloudthings: A common architecture for integrating the internet of things with cloud computing," in Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 651-657. IEEE, 2013. [DOI:10.1109/CSCWD.2013.6581037]
14. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, "The internet of things for health care: A comprehensive survey," IEEE Access, vol. 3, pp. 678-708, 2015. [DOI:10.1109/ACCESS.2015.2437951]
15. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system. Manubot, 2019.
16. F. Hussain and U. Qamar, "Identification and correction of misspelled drugs' names in electronic medical records (EMR)," in International Conference on Enterprise Information Systems, vol. 3, pp. 333-338. SCITEPRESS, 2016. [DOI:10.5220/0005911503330338] [PMID]
17. S. I. Goldberg, M. Shubina, A. Niemierko, and A. Turchin, "A weighty problem: Identification, characteristics and risk factors for errors in EMR data," in AMIA Annual Symposium Proceedings, vol. 2010, p. 251. American Medical Informatics Association, 2010.
18. E. A. Mohammed, B. H. Far, and C. Naugler, "Applications of the MapReduce programming framework to clinical big data analysis: Current landscape and future trends," BioData Mining, vol. 7, no. 1, pp. 1-23, 2014. [DOI:10.1186/1756-0381-7-22] [PMID] []
19. Y. Liang and A. Kelemen, "Big Data science and its applications in health and medical research: Challenges and opportunities," J Biom Biostat, vol. 7, no. 307, 2016. [DOI:10.4172/2155-6180.1000307]
20. W. J. Gordon and C. Catalini, "Blockchain technology for healthcare: Facilitating the transition to patient-driven interoperability," Computational and Structural Biotechnology Journal, vol. 16, pp. 224-230, 2018. [DOI:10.1016/j.csbj.2018.06.003] [PMID] []
21. L. Castaldo and V. Cinque, "Blockchain-based logging for the cross-border exchange of ehealth data in Europe," International ISCIS Security Workshop. Springer, Cham, 2018. [DOI:10.1007/978-3-319-95189-8_5]
22. D. C. Nguyen, et al., "Blockchain for secure EHRs sharing of mobile cloud based e-Health systems," IEEE Access, vol. 7, pp. 66792-66806, 2019. [DOI:10.1109/ACCESS.2019.2917555]
23. M. Qazi, D. Kulkarni, and M. Nagori, "Proof of authenticity-based electronic medical records storage on blockchain," in Smart Trends in Computing and Communications, Springer, Singapore, pp. 297-306, 2020. [DOI:10.1007/978-981-15-0077-0_31]
24. A. Zhang and X. Lin, "Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain," Journal of Medical Systems, vol. 42, no. 8, p. 140, 2018. [DOI:10.1007/s10916-018-0995-5] [PMID]
25. S. Tanwar, K. Parekh, and R. Evans, "Blockchain-based electronic healthcare record system for healthcare 4.0 applications," Journal of Information Security and Applications, vol. 50, p. 102407, 2020. [DOI:10.1016/j.jisa.2019.102407]
26. G. Tripathi, M. A. Ahad, and S. Paiva, "S2HS-A blockchain based approach for smart healthcare system," Healthcare, Elsevier, 2019. [DOI:10.1016/j.hjdsi.2019.100391] [PMID]
27. E. Gorelik, "Cloud computing models," Doctoral dissertation, Massachusetts Institute of Technology, 2013.
28. C. Choi, J.-H. Park, M. Na, and S. Jo, "Low-latency 5G architectures for mission-critical Internet of Things (IoT) services," Information and Communications Magazine, vol. 32, no. 9, pp. 17-23, 2015.
29. H. Wu, K. Yue, C.-H. Hsu, Y. Zhao, B. Zhang, and G. Zhang, "Deviation-based neighborhood model for context-aware QoS prediction of cloud and IoT services," Future Generation Computer Systems, vol. 76, pp. 550-560, 2017. [DOI:10.1016/j.future.2016.10.015]
30. P. Bonte, F. Ongenae, F. De Backere, J. Schaballie, D. Arndt, S. Verstichel, E. Mannens, R. Van de Walle, and F. De Turck, "The MASSIF platform: A modular and semantic platform for the development of flexible IoT services," Knowledge and Information Systems, vol. 51, no. 1, pp. 89-126, 2017. [DOI:10.1007/s10115-016-0969-1]
31. T. D. Cao, H. H. Hoang, H. X. Huynh, B. M. Nguyen, T. V. Pham, Q. Tran-Minh, ... and H. L. Truong, "IoT services for solving critical problems in Vietnam: A research landscape and directions," IEEE Internet Computing, vol. 20, no. 5, pp. 76-81, 2016. [DOI:10.1109/MIC.2016.97]
32. G. Gang, Z. L., and J. Jun, "Internet of things security analysis," in Internet Technology and Applications (iTAP), 2011 International Conference on, pp. 1-4. IEEE, 2011. [DOI:10.1109/ITAP.2011.6006307] []
33. A. Whitmore, A. Agarwal, and L. Da Xu, "The Internet of Things-A survey of topics and trends," Information Systems Frontiers, pp. 1-14, 2014.
34. J. Guo, R. Chen, and J. J. P. Tsai, "A mobile cloud hierarchical trust management protocol for IoT systems," in Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2017 5th IEEE International Conference on, IEEE, 2017. [DOI:10.1109/MobileCloud.2017.13]
35. Y. Liu, J. E. Fieldsend, and G. Min, "A framework of fog computing: Architecture, challenges, and optimization," IEEE Access, vol. 5, pp. 25445-25454, 2017. [DOI:10.1109/ACCESS.2017.2766923]
36. H. Kim and E. A. Lee, "Authentication and authorization for the Internet of Things," IT Professional, vol. 19, no. 5, pp. 27-33, 2017. [DOI:10.1109/MITP.2017.3680960]
37. M. Mahmud, et al., "A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications," arXiv preprint arXiv:1801.03984, 2018. [DOI:10.1007/s12559-018-9543-3]
38. R. K. Behera, K. H. K. Reddy, and D. S. Roy, "Reliability modelling of service oriented Internet of Things," in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions), IEEE, 2015. [DOI:10.1109/ICRITO.2015.7359216] []
39. V. Kharchenko, et al., "Reliability and security issues for IoT-based smart business center: Architecture and Markov model," in 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), IEEE, 2016. [DOI:10.1109/MCSI.2016.064]
40. V. Sharma, et al., "A consensus framework for reliability and mitigation of zero-day attacks in IoT," Security and Communication Networks, 2017. [DOI:10.1155/2017/4749085]
41. C. Stergiou, et al., "Secure integration of IoT and cloud computing," Future Generation Computer Systems, vol. 78, pp. 964-975, 2018. [DOI:10.1016/j.future.2016.11.031]
42. I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, and W. Ni, "PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities," Computers & Security, vol. 88, p. 101653, 2020. [DOI:10.1016/j.cose.2019.101653]
43. H. Deng, Z. Qin, L. Sha, and H. Yin, "A flexible privacy-preserving data sharing scheme in cloud-assisted IoT," IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11601-11611, 2020. [DOI:10.1109/JIOT.2020.2999350]
44. P. Tedeschi, K. E. Jeon, J. She, S. Wong, S. Bakiras, and R. Di Pietro, "Privacy-preserving and sustainable contact tracing using batteryless BLE beacons," arXiv preprint arXiv:2103.06221, 2021. [DOI:10.1109/MSEC.2021.3115497]
45. F. Firouzi, B. Farahani, M. Barzegari, and M. Daneshmand, "AI-driven data monetization: The other face of data in IoT-based smart and connected health," IEEE Internet of Things Journal, 2020.
46. R. Goyat, G. Kumar, R. Saha, M. Conti, M. K. Rai, R. Thomas, M. Alazab, and T. H.-K. Kim, "Blockchain-based data storage with privacy and authentication in Internet-of-Things," IEEE Internet of Things Journal, 2020.
47. A. Ali, et al., "HealthLock: Blockchain-based privacy preservation using homomorphic encryption in Internet of Things healthcare applications," Sensors, vol. 23, no. 15, p. 6762, 2023. [DOI:10.3390/s23156762] [PMID] []
48. S. Das and S. Namasudra, "Lightweight and efficient privacy-preserving mutual authentication scheme to secure Internet of Things-based smart healthcare," Transactions on Emerging Telecommunications Technologies, 2023, e4716. [DOI:10.1002/ett.4716]
49. H. N. Alsuqaih, et al., "An efficient privacy-preserving control mechanism based on blockchain for E-health applications," Alexandria Engineering Journal, vol. 73, pp. 159-172, 2023. [DOI:10.1016/j.aej.2023.04.037]
50. M. I. Ahmed and G. Kannan, "Secure and lightweight privacy-preserving Internet of Things integration for remote patient monitoring," Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 9, pp. 6895-6908, 2022. [DOI:10.1016/j.jksuci.2021.07.016]
51. M. P. Mahmoudi-Nasr and K. H. Kimia, "A mutual authentication method for Internet of Things", Signal and Data Processing, vol. 19, no. 2, pp. 6, 2022. [Online]. Available: http://jsdp.rcisp.ac.ir/article-1-1134-fa.html [DOI:10.52547/jsdp.19.2.73]
52. [S. Azizi, M. Ashouri-Talouki, and H. Mala, "An efficient and secure frequent multiparty summation protocol", Signal and Data Processing, vol. 15, no. 4, pp. 31-40, 2019. [Online]. Available: http://jsdp.rcisp.ac.ir/article-1-649-fa.html [DOI:10.29252/jsdp.15.4.31]
53. A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano, "Heart Disease," UCI Machine Learning Repository [Online]. Available: https://archive.ics.uci.edu/dataset/45/heart+disease. [Accessed: Mar. 15, 2024].

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.