1. [1] B. Pang and L. Lee, "Opinion mining and sentiment analysis," Foundations and Trends® in Information Retrieval, vol. 2, no. 1-2, pp. 1-135, 2008. [
DOI:10.1561/1500000011]
2. [2] B. Liu and L. Zhang, "A survey of opinion mining and sentiment analysis," in Mining text data: Springer, 2012, pp. 415-463. [
DOI:10.1007/978-1-4614-3223-4_13]
3. [3] I. Chaturvedi, E. Cambria, R. E. Welsch, and F. Herrera, "Distinguishing between facts and opinions for sentiment analysis: Survey and challenges," Information Fusion, vol. 44, pp. 65-77, 2018. [
DOI:10.1016/j.inffus.2017.12.006]
4. [4] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, "Lexicon-based methods for sentiment analysis," Computational linguistics, vol. 37, no. 2, pp. 267-307, 2011. [
DOI:10.1162/COLI_a_00049]
5. [5] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.
6. [6] B. Liu, "Sentiment analysis and opinion mining," Synthesis lectures on human language technologies, vol. 5, no. 1, pp. 1-167, 2012. [
DOI:10.2200/S00416ED1V01Y201204HLT016]
7. [7] S. Li, "Sentiment classification using subjective and objective views," International Journal of Computer Applications, vol. 80, no. 7, 2013. [
DOI:10.5120/13875-1749]
8. [8] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up? Sentiment classification using machine learning techniques," arXiv preprint cs/0205070, 2002. [
DOI:10.3115/1118693.1118704]
9. [9] Y. Jo and A. H. Oh, "Aspect and sentiment unification model for online review analysis," in Proceedings of the fourth ACM international conference on Web search and data mining, 2011, pp. 815-824. [
DOI:10.1145/1935826.1935932]
10. [10] D. Maynard and A. Funk, "Automatic detection of political opinions in tweets," in Extended Semantic Web Conference, 2011: Springer, pp. 88-99. [
DOI:10.1007/978-3-642-25953-1_8]
11. [11] K. Dashtipour, A. Hussain, Q. Zhou, A. Gelbukh, A. Y. Hawalah, and E. Cambria, "PerSent: A freely available Persian sentiment lexicon," in International Conference on Brain Inspired Cognitive Systems, 2016: Springer, pp. 310-320. [
DOI:10.1007/978-3-319-49685-6_28]
12. [12] P. D. Turney, "Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews," arXiv preprint cs/0212032, 2002. [
DOI:10.3115/1073083.1073153]
13. [13] S. Rani and P. Kumar, "Deep learning based sentiment analysis using convolution neural network," Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3305-3314, 2019. [
DOI:10.1007/s13369-018-3500-z]
14. [14] G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, "Sentiment analysis of comment texts based on BiLSTM," Ieee Access, vol. 7, pp. 51522-51532, 2019. [
DOI:10.1109/ACCESS.2019.2909919]
15. [15] M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, "A CNN-BiLSTM model for document-level sentiment analysis," Machine Learning and Knowledge Extraction, vol. 1, no. 3, pp. 832-847, 2019. [
DOI:10.3390/make1030048]
16. [16] M. Ahmad, S. Aftab, and I. Ali, "Sentiment analysis of tweets using svm," Int. J. Comput. Appl, vol. 177, no. 5, pp. 25-29, 2017. [
DOI:10.5120/ijca2017915758]
17. [17] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, "SVM optimization for sentiment analysis," Int. J. Adv. Comput. Sci. Appl, vol. 9, no. 4, pp. 393-398, 2018. [
DOI:10.14569/IJACSA.2018.090455]
18. [18] K. Korovkinas, P. Danėnas, and G. Garšva, "SVM and k-means hybrid method for textual data sentiment analysis," Baltic Journal of Modern Computing, vol. 7, no. 1, pp. 47-60, 2019. [
DOI:10.22364/bjmc.2019.7.1.04]
19. [19] L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, "Sentiment analysis of review datasets using naive bayes and k-nn classifier," arXiv preprint arXiv:1610.09982, 2016. [
DOI:10.5815/ijieeb.2016.04.07]
20. [20] V. Narayanan, I. Arora, and A. Bhatia, "Fast and accurate sentiment classification using an enhanced Naive Bayes model," in International Conference on Intelligent Data Engineering and Automated Learning, 2013: Springer, pp. 194-201. [
DOI:10.1007/978-3-642-41278-3_24]
21. [21] M. S. Hajmohammadi and R. Ibrahim, "A SVM-based method for sentiment analysis in Persian language," International Conference on Graphic and Image Processing (ICGIP 2012), vol. 8768, p. 876838, 2013. [
DOI:10.1117/12.2010940]
22. [22] M. Saraee and A. Bagheri, "Feature selection methods in Persian sentiment analysis," International Conference on Application of Natural Language to Information Systems, pp. 303-308, 2013. [
DOI:10.1007/978-3-642-38824-8_29]
23. [23] A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, "Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization," Procedia Engineering, vol. 53, no. 7, pp. 453-462, 2013. [
DOI:10.1016/j.proeng.2013.02.059]
24. [24] T. S. Ataei, K. Darvishi, S. Javdan, B. Minaei-Bidgoli, and S. Eetemadi, "Pars-ABSA: an Aspect-based Sentiment Analysis dataset for Persian," arXiv preprint arXiv:1908.01815, 2019.
25. [25] K. Dashtipour, M. Gogate, A. Adeel, C. Ieracitano, H. Larijani, and A. Hussain, "Exploiting deep learning for persian sentiment analysis," International Conference on Brain Inspired Cognitive Systems, pp. 597-604, 2018. [
DOI:10.1007/978-3-030-00563-4_58]
26. [26] E. Cambria, D. Olsher, and D. Rajagopal, "SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis," in Proceedings of the AAAI Conference on Artificial Intelligence, 2014, vol. 28, no. 1. [
DOI:10.1609/aaai.v28i1.8928]
27. [27] M. Hu and B. Liu, "Mining and summarizing customer reviews," in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004, pp. 168-177. [
DOI:10.1145/1014052.1014073]
28. [28] L. Deng and J. Wiebe, "Mpqa 3.0: An entity/event-level sentiment corpus," in Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: human language technologies, 2015, pp. 1323-1328. [
DOI:10.3115/v1/N15-1146]
29. [29] A. Neviarouskaya, H. Prendinger, and M. Ishizuka, "SentiFul: A lexicon for sentiment analysis," IEEE Transactions on Affective Computing, vol. 2, no. 1, pp. 22-36, 2011. [
DOI:10.1109/T-AFFC.2011.1]
30. [30] A. Esuli and F. Sebastiani, "Sentiwordnet: A publicly available lexical resource for opinion mining," in LREC, 2006, vol. 6: Citeseer, pp. 417-422.
31. [31] S. M. Mohammad and P. D. Turney, "Crowdsourcing a word-emotion association lexicon," Computational intelligence, vol. 29, no. 3, pp. 436-465, 2013. [
DOI:10.1111/j.1467-8640.2012.00460.x]
32. [32] M. E. Basiri, A. R. Naghsh-Nilchi, and N. Ghassem-Aghaee, "A framework for sentiment analysis in persian," Open transactions on information processing, vol. 1, no. 3, pp. 1-14, 2014. [
DOI:10.15764/OTIP.2014.03001]
33. [33] M. E. Basiri and A. Kabiri, "Sentence-level sentiment analysis in Persian," in 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), 2017: IEEE, pp. 84-89. [
DOI:10.1109/PRIA.2017.7983023]
34. [34] S. M. Mohammad, S. Kiritchenko, and X. Zhu, "NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets," arXiv preprint arXiv:1308.6242, 2013.
35. [35] M. Thelwall, K. Buckley, and G. Paltoglou, "Sentiment strength detection for the social web," Journal of the American Society for Information Science and Technology, vol. 63, no. 1, pp. 163-173, 2012. [
DOI:10.1002/asi.21662]
36. [36] M. E. Basiri and A. Kabiri, "Translation is not enough: comparing lexicon-based methods for sentiment analysis in Persian," in 2017 International Symposium on Computer Science and Software Engineering Conference (CSSE), 2017: IEEE, pp. 36-41. [
DOI:10.1109/CSICSSE.2017.8320114]
37. [37] B. Sabeti, P. Hosseini, G. Ghassem-Sani, and S. A. Mirroshandel, "LexiPers: An ontology based sentiment lexicon for Persian," arXiv preprint arXiv:1911.05263, 2019.
38. [38] F. Amiri, S. Scerri, and M. Khodashahi, "Lexicon-based sentiment analysis for Persian text," in Proceedings of the International Conference Recent Advances in Natural Language Processing, 2015, pp. 9-16.
39. [39] R. Dehkharghani, "Sentifars: A persian polarity lexicon for sentiment analysis," ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), vol. 19, no. 2, pp. 1-12, 2019. [
DOI:10.1145/3345627]
40. [40] E. Haddi, X. Liu, and Y. Shi, "The role of text pre-processing in sentiment analysis," Procedia Computer Science, vol. 17, pp. 26-32, 2013. [
DOI:10.1016/j.procs.2013.05.005]
41. [41] A. AleAhmad, H. Amiri, E. Darrudi, M. Rahgozar, and F. Oroumchian, "Hamshahri: A standard Persian text collection," Knowledge-Based Systems, vol. 22, no. 5, pp. 382-387, 2009. [
DOI:10.1016/j.knosys.2009.05.002]
42. [42] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, "Sentiment strength detection in short informal text," Journal of the American society for information science and technology, vol. 61, no. 12, pp. 2544-2558, 2010. [
DOI:10.1002/asi.21416]
43. [43] G. Shafer, A mathematical theory of evidence. Princeton university press, 1976. [
DOI:10.1515/9780691214696] [
]