Volume 20, Issue 2 (9-2023)                   JSDP 2023, 20(2): 3-20 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahangari Ahangarkolaei M, Sebti A, Yaghoubi M. Automatically generate sentiment lexicon for the Persian stock market. JSDP 2023; 20 (2) : 1
URL: http://jsdp.rcisp.ac.ir/article-1-1243-en.html
Golestan University
Abstract:   (707 Views)
With the significant growth of social media, individuals and organizations are increasingly using public opinion in these media to make their own decisions. The purpose of Sentiment Analysis is to automatically extract peoplechr('39')s emotions from these social networks. Social networks related to financial markets, including stock markets, have recently attracted the attention of many individuals and organizations. People on these social networks share their opinions and ideas about each share in the form of a post or tweet. In fact, sentiment analysis in this area is measuring peoplechr('39')s attitudes toward each share. One of the basic approaches in automatic analysis of emotions is lexicon-based methods. Most conventional lexicon is manually extracted, which is a very difficult and costly process. In this article, a new method for extracting a lexicon automatically in the field of stock social networks is proposed. A special feature of these networks is the availability of price information per share. Taking into account the price information of the share on the day of tweeting for that share, we extracted lexicon to improve the quality of opinion mining in these social networks. To evaluate the lexicon produced using the proposed method, we compared it with the Persian version of the SentiStrength lexicon, which is designed for general purpose. Experimental results show a 20% improvement in accuracy compared to the use of general lexicon.
Article number: 1
Full-Text [PDF 1026 kb]   (209 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2021/06/20 | Accepted: 2022/08/29 | Published: 2023/10/22 | ePublished: 2023/10/22

References
1. [1] B. Pang and L. Lee, "Opinion mining and sentiment analysis," Foundations and Trends® in Information Retrieval, vol. 2, no. 1-2, pp. 1-135, 2008. [DOI:10.1561/1500000011]
2. [2] B. Liu and L. Zhang, "A survey of opinion mining and sentiment analysis," in Mining text data: Springer, 2012, pp. 415-463. [DOI:10.1007/978-1-4614-3223-4_13]
3. [3] I. Chaturvedi, E. Cambria, R. E. Welsch, and F. Herrera, "Distinguishing between facts and opinions for sentiment analysis: Survey and challenges," Information Fusion, vol. 44, pp. 65-77, 2018. [DOI:10.1016/j.inffus.2017.12.006]
4. [4] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, "Lexicon-based methods for sentiment analysis," Computational linguistics, vol. 37, no. 2, pp. 267-307, 2011. [DOI:10.1162/COLI_a_00049]
5. [5] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.
6. [6] B. Liu, "Sentiment analysis and opinion mining," Synthesis lectures on human language technologies, vol. 5, no. 1, pp. 1-167, 2012. [DOI:10.2200/S00416ED1V01Y201204HLT016]
7. [7] S. Li, "Sentiment classification using subjective and objective views," International Journal of Computer Applications, vol. 80, no. 7, 2013. [DOI:10.5120/13875-1749]
8. [8] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up? Sentiment classification using machine learning techniques," arXiv preprint cs/0205070, 2002. [DOI:10.3115/1118693.1118704]
9. [9] Y. Jo and A. H. Oh, "Aspect and sentiment unification model for online review analysis," in Proceedings of the fourth ACM international conference on Web search and data mining, 2011, pp. 815-824. [DOI:10.1145/1935826.1935932]
10. [10] D. Maynard and A. Funk, "Automatic detection of political opinions in tweets," in Extended Semantic Web Conference, 2011: Springer, pp. 88-99. [DOI:10.1007/978-3-642-25953-1_8]
11. [11] K. Dashtipour, A. Hussain, Q. Zhou, A. Gelbukh, A. Y. Hawalah, and E. Cambria, "PerSent: A freely available Persian sentiment lexicon," in International Conference on Brain Inspired Cognitive Systems, 2016: Springer, pp. 310-320. [DOI:10.1007/978-3-319-49685-6_28]
12. [12] P. D. Turney, "Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews," arXiv preprint cs/0212032, 2002. [DOI:10.3115/1073083.1073153]
13. [13] S. Rani and P. Kumar, "Deep learning based sentiment analysis using convolution neural network," Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3305-3314, 2019. [DOI:10.1007/s13369-018-3500-z]
14. [14] G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, "Sentiment analysis of comment texts based on BiLSTM," Ieee Access, vol. 7, pp. 51522-51532, 2019. [DOI:10.1109/ACCESS.2019.2909919]
15. [15] M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, "A CNN-BiLSTM model for document-level sentiment analysis," Machine Learning and Knowledge Extraction, vol. 1, no. 3, pp. 832-847, 2019. [DOI:10.3390/make1030048]
16. [16] M. Ahmad, S. Aftab, and I. Ali, "Sentiment analysis of tweets using svm," Int. J. Comput. Appl, vol. 177, no. 5, pp. 25-29, 2017. [DOI:10.5120/ijca2017915758]
17. [17] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, "SVM optimization for sentiment analysis," Int. J. Adv. Comput. Sci. Appl, vol. 9, no. 4, pp. 393-398, 2018. [DOI:10.14569/IJACSA.2018.090455]
18. [18] K. Korovkinas, P. Danėnas, and G. Garšva, "SVM and k-means hybrid method for textual data sentiment analysis," Baltic Journal of Modern Computing, vol. 7, no. 1, pp. 47-60, 2019. [DOI:10.22364/bjmc.2019.7.1.04]
19. [19] L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, "Sentiment analysis of review datasets using naive bayes and k-nn classifier," arXiv preprint arXiv:1610.09982, 2016. [DOI:10.5815/ijieeb.2016.04.07]
20. [20] V. Narayanan, I. Arora, and A. Bhatia, "Fast and accurate sentiment classification using an enhanced Naive Bayes model," in International Conference on Intelligent Data Engineering and Automated Learning, 2013: Springer, pp. 194-201. [DOI:10.1007/978-3-642-41278-3_24]
21. [21] M. S. Hajmohammadi and R. Ibrahim, "A SVM-based method for sentiment analysis in Persian language," International Conference on Graphic and Image Processing (ICGIP 2012), vol. 8768, p. 876838, 2013. [DOI:10.1117/12.2010940]
22. [22] M. Saraee and A. Bagheri, "Feature selection methods in Persian sentiment analysis," International Conference on Application of Natural Language to Information Systems, pp. 303-308, 2013. [DOI:10.1007/978-3-642-38824-8_29]
23. [23] A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, "Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization," Procedia Engineering, vol. 53, no. 7, pp. 453-462, 2013. [DOI:10.1016/j.proeng.2013.02.059]
24. [24] T. S. Ataei, K. Darvishi, S. Javdan, B. Minaei-Bidgoli, and S. Eetemadi, "Pars-ABSA: an Aspect-based Sentiment Analysis dataset for Persian," arXiv preprint arXiv:1908.01815, 2019.
25. [25] K. Dashtipour, M. Gogate, A. Adeel, C. Ieracitano, H. Larijani, and A. Hussain, "Exploiting deep learning for persian sentiment analysis," International Conference on Brain Inspired Cognitive Systems, pp. 597-604, 2018. [DOI:10.1007/978-3-030-00563-4_58]
26. [26] E. Cambria, D. Olsher, and D. Rajagopal, "SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis," in Proceedings of the AAAI Conference on Artificial Intelligence, 2014, vol. 28, no. 1. [DOI:10.1609/aaai.v28i1.8928]
27. [27] M. Hu and B. Liu, "Mining and summarizing customer reviews," in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004, pp. 168-177. [DOI:10.1145/1014052.1014073]
28. [28] L. Deng and J. Wiebe, "Mpqa 3.0: An entity/event-level sentiment corpus," in Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: human language technologies, 2015, pp. 1323-1328. [DOI:10.3115/v1/N15-1146]
29. [29] A. Neviarouskaya, H. Prendinger, and M. Ishizuka, "SentiFul: A lexicon for sentiment analysis," IEEE Transactions on Affective Computing, vol. 2, no. 1, pp. 22-36, 2011. [DOI:10.1109/T-AFFC.2011.1]
30. [30] A. Esuli and F. Sebastiani, "Sentiwordnet: A publicly available lexical resource for opinion mining," in LREC, 2006, vol. 6: Citeseer, pp. 417-422.
31. [31] S. M. Mohammad and P. D. Turney, "Crowdsourcing a word-emotion association lexicon," Computational intelligence, vol. 29, no. 3, pp. 436-465, 2013. [DOI:10.1111/j.1467-8640.2012.00460.x]
32. [32] M. E. Basiri, A. R. Naghsh-Nilchi, and N. Ghassem-Aghaee, "A framework for sentiment analysis in persian," Open transactions on information processing, vol. 1, no. 3, pp. 1-14, 2014. [DOI:10.15764/OTIP.2014.03001]
33. [33] M. E. Basiri and A. Kabiri, "Sentence-level sentiment analysis in Persian," in 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), 2017: IEEE, pp. 84-89. [DOI:10.1109/PRIA.2017.7983023]
34. [34] S. M. Mohammad, S. Kiritchenko, and X. Zhu, "NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets," arXiv preprint arXiv:1308.6242, 2013.
35. [35] M. Thelwall, K. Buckley, and G. Paltoglou, "Sentiment strength detection for the social web," Journal of the American Society for Information Science and Technology, vol. 63, no. 1, pp. 163-173, 2012. [DOI:10.1002/asi.21662]
36. [36] M. E. Basiri and A. Kabiri, "Translation is not enough: comparing lexicon-based methods for sentiment analysis in Persian," in 2017 International Symposium on Computer Science and Software Engineering Conference (CSSE), 2017: IEEE, pp. 36-41. [DOI:10.1109/CSICSSE.2017.8320114]
37. [37] B. Sabeti, P. Hosseini, G. Ghassem-Sani, and S. A. Mirroshandel, "LexiPers: An ontology based sentiment lexicon for Persian," arXiv preprint arXiv:1911.05263, 2019.
38. [38] F. Amiri, S. Scerri, and M. Khodashahi, "Lexicon-based sentiment analysis for Persian text," in Proceedings of the International Conference Recent Advances in Natural Language Processing, 2015, pp. 9-16.
39. [39] R. Dehkharghani, "Sentifars: A persian polarity lexicon for sentiment analysis," ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), vol. 19, no. 2, pp. 1-12, 2019. [DOI:10.1145/3345627]
40. [40] E. Haddi, X. Liu, and Y. Shi, "The role of text pre-processing in sentiment analysis," Procedia Computer Science, vol. 17, pp. 26-32, 2013. [DOI:10.1016/j.procs.2013.05.005]
41. [41] A. AleAhmad, H. Amiri, E. Darrudi, M. Rahgozar, and F. Oroumchian, "Hamshahri: A standard Persian text collection," Knowledge-Based Systems, vol. 22, no. 5, pp. 382-387, 2009. [DOI:10.1016/j.knosys.2009.05.002]
42. [42] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, "Sentiment strength detection in short informal text," Journal of the American society for information science and technology, vol. 61, no. 12, pp. 2544-2558, 2010. [DOI:10.1002/asi.21416]
43. [43] G. Shafer, A mathematical theory of evidence. Princeton university press, 1976. [DOI:10.1515/9780691214696] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing