1. [1] t. o. c. cart. [Online]. Available: [https://www.thebalance.com/key-differences-between-visa-mastercard-discover-anmerican-express-4588450#citation-4.
2. [2] "Performance Evaluation of Credit Card Fraud Transactions using Boosting Algorithms, " International Journal of Electronics Communication and Computer Engineering, vol. 10, no. 6, pp. 262-270, 2019.
3. [3] J. Huang, "Credit Card Transaction Fraud Using Machine Learning Algorithms, " in 2019 International Conference on Education Science and Economic Development (ICESED 2019), 2020. [
DOI:10.2991/icesed-19.2020.14]
4. [4] Y. Ganin, E. Ustinova, H. Ajakan and P. Germain, "Domain-Adversarial Training of Neural Networks, " The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2030-2096, 2016.
5. [5] M. Raza and U. Qayyum, "Classical and deep learning classifiers for anomaly detection," 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 614-618, 2019. [
DOI:10.1109/IBCAST.2019.8667245]
6. [6] B. Lebichot, Y.-A. L. Borgne, L. He-Guelton, F. Oblé and G. Bontempi, "Deep-learning domain adaptation techniques for credit cards fraud detection," in NNS Big Data and Deep Learning conference, Cham, 2019. [
DOI:10.1007/978-3-030-16841-4_8]
7. [7] A. A. Abdulrazaq, M. B. Abdulrazaq, I. J. Umoh and E. A. Adedokun, "Fraud Detection in Credit Card and Application of VAT Clustering Algorithm: A Review, " in 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf), 2019, October. [
DOI:10.1109/NigeriaComputConf45974.2019.8949660]
8. [8] Y. Lucas, P.-E. Portier, L. Laporte, L. He-Guelton, O. Caelen, M. Granitzer and S. Calabretto, "Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs," Future Generation Computer Systems, vol. 102, pp. 393-402, 2020. [
DOI:10.1016/j.future.2019.08.029]
9. [9] I. Sadgali, N. Sael and F. Benabbou, "Comparative Study Using Neural Networks Techniques for Credit Card Fraud Detection, " The Proceedings of the Third International Conference on Smart City Applications, 2019. [
DOI:10.1007/978-3-030-37629-1_22]
10. [10] R. Saia and S. Carta, "Evaluating the benefits of using proactive transformed-domain-based techniques in fraud detection tasks, " uture Generation Computer Systems, vol. 93, 2019. [
DOI:10.1016/j.future.2018.10.016]
11. [11] E. Kim, J. Lee, H. Shin, H. Yang, S. Cho, S.-k. Nam and e. al, "Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning," Expert Systems with Applications, vol. 128, pp. 214-224, 2019. [
DOI:10.1016/j.eswa.2019.03.042]
12. [12] C.-H. Su, F. Tu, X. Zhang, B.-C. Shia and T.-S. Lee, "A ENSEMBLE MACHINE LEARNING BASED SYSTEM FOR MERCHANT CREDIT RISK DETECTION IN MERCHANT MCC MISUSE," Journal of Data Science, vol. 17, no. 1, pp. 81-106, 2019.
13. [13] G. M. C. A. R. Hajela, "A Clustering Based Hotspot Identification Approach For Crime Prediction, " Procedia Computer Science, vol. 167, pp. 1462-1470, 2020. [
DOI:10.1016/j.procs.2020.03.357]
14. [14] R. Md and A. Rab, "A Comparative Study on Crime in Denver City Based on Machine Learning and Data Mining., " arXiv preprint arXiv:2001.02802, 2020 Jan 9.
15. [15] R. Polikar, Ensemble Learning, M. Y. Zhang C., Ed., Boston, Massachusetts: Springer, 19 January 2012. [
DOI:10.1007/978-1-4419-9326-7_1]
16. [16] L. F. A. A. S. N. K. S. J. D. R. S. Gutierrez-Espinoza, "Fake Reviews Detection through Ensemble Learning., " arXiv preprint arXiv:2006.07912, 2020 Jun 14.
17. [17] A. A. a. S. J. M. Taha, "An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine., " IEEE Access 8, vol. 8, pp. 25579-25587, 2020 Feb 3. [
DOI:10.1109/ACCESS.2020.2971354]
18. [18] M. H. S. G. Arya, "DEAL-'Deep Ensemble ALgorithm'Framework for Credit Card Fraud Detection in Real-Time Data Stream with Google TensorFlow., " Smart Science, vol. 8, no. 2, pp. 71-83, 2020 Apr 2. [
DOI:10.1080/23080477.2020.1783491]
19. [19] S. A. G. N. G. A. G. Bagga, "Credit Card Fraud Detection using Pipeling and Ensemble Learning, " Procedia Computer Science, vol. 173, pp. 104-112, 2020 Jan 1. [
DOI:10.1016/j.procs.2020.06.014]
20. [20] P. Kumari and S. P. Mishra, "Analysis of credit card fraud detection using fusion classifiers, " Computational Intelligence in Data Mining, pp. 111-122, 2019. [
DOI:10.1007/978-981-10-8055-5_11]
21. [21] H. Najadat, O. Altiti, A. A. Aqouleh and M. Younes, "Credit Card Fraud Detection Based on Machine and Deep Learning, " in 11th International Conference on Information and Communication Systems (ICICS), IEEE, 2020. [
DOI:10.1109/ICICS49469.2020.239524]
22. [22] G. Alicja, M. Bakala, K. Woznica, M. Zwolinski and P. Biecek, "EPP: interpretable score of model predictive power., " arXiv, p. preprint arXiv:1908.09213, 2019 Aug 24.
23. [23] Z. Yixuan, J. Tong, Z. Wang and F. Gao, "Customer Transaction Fraud Detection Using Xgboost Model, " in International Conference on Computer Engineering and Application (ICCEA), IEEE, 2020 Mar 18.
24. [24] D. J. G. S. C. a. J. C. Ge, "Credit Card Fraud Detection Using Lightgbm Model., " in International Conference on E-Commerce and Internet Technology (ECIT), IEEE, 2020 Apr 22.
25. [25] J. Choi, B. Jeong, Y. Park, J. Seo and C. Min, "AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD, " Journal of the Korean Society for Industrial and Applied Mathematics, vol. 22, no. 1, pp. 1-13, 2018.
26. [26] D. Kavya and K. Chitharanjan, "Performance Evaluation of Credit Card Fraud Transactions using Boosting Algorithms, " International Journal of Electronics Communication and Computer Engineering, vol. 10, no. 6, pp. 262-270, 2019.
27. [27] Y. Liang, W. Jiyu, W. Wei, C. Yujun, Z. Biliang, C. Zhenkun and L. Zhenzhang, "Product marketing prediction based on XGboost and LightGBM algorithm, " the 2nd International Conference on Artificial Intelligence and Pattern Recognition, pp. 150-153, 2019. [
DOI:10.1145/3357254.3357290]
28. [28] V. K. Ayyadevara, "Gradient Boosting Machine, " Pro Machine Learning Algorithms, pp. 117-134, 01 July 2018. [
DOI:10.1007/978-1-4842-3564-5_6]
29. [29] P. KHANDELWAL, "Which algorithm takes the crown: Light GBM vs XGBOOST?," 12 June 2017. [Online]. Available: https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/.
30. [30] S. Mittal and S. Tyagi, "Computational Techniques for Real-Time Credit Card Fraud Detection., " Handbook of Computer Networks and Cyber Security, pp. 653-681, 2020. [
DOI:10.1007/978-3-030-22277-2_26]