1. World Bank Open Data, 2023, Available: [Online] https://data.worldbank.org.
2. K. Golmohammadi, O. R. Zaiane, and D. Diaz, "Detecting stock market manipulation using supervised learning algorithms", International Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2014. [
DOI:10.1109/DSAA.2014.7058109]
3. Aksenov, A., Grebenchshikova, E., Fayzrakhmanov, R. "Front-running Model in the Stock Market", ieeexplore, 2020. [
DOI:10.1109/SUMMA50634.2020.9280575]
4. V. Azevedo, Ch. Hoegner, "Enhancing stock market anomalies with machine learning", Quantitative finance and accounting, vol. 60, pp. 195-230, 2023 [
DOI:10.1007/s11156-022-01099-z]
5. W. Hilal, S. A. Gadsden, and J. Yawney, "Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances", Expert systems with applications, Elsevier, vol.193, pp. 1-34, 2022. [
DOI:10.1016/j.eswa.2021.116429]
6. C. Poutre, D. Chetelat, M. Morales, "Deep unsupervised anomaly detection in high-frequency markets", The journal of finance and data science, vol. 10, pp. 1-18, 2024. [
DOI:10.1016/j.jfds.2024.100129]
7. D. Y. Chiu, J. Y. Zhou, and Zh. Ch. Wang, "Appling artificial immune algorithm to explore the seasonal effect in the stock market", International Conference on Software Intelligence and Applications, 2014.
8. Y. Cao, Y. Li, S. Coleman, A. Belareche, and T. M. McGinniti, "Hidden Markov model with abnormal states for detecting stock price manipulation", IEEE International Conference on Systems, Man, and Cybernetics, 2013. [
DOI:10.1109/SMC.2013.514]
9. Y. Cao, Y. Li, S. Coleman, A. Belareche, T. M. McGinniti, "Adaptive hidden Markov model with anomaly states for price manipulation detection", IEEE Transactions on Neural Networks and learning systems, vol. 26, pp. 318-330, 2015. [
DOI:10.1109/TNNLS.2014.2315042] [
PMID]
10. Imperva's Web Application Firewall data sheet. Available: https://www.imperva.com/docs/TB_Dynamic_Profilin g.pdf.
11. LightCyber and Check Point Advanced Threat Protection solution brief. Available: https://www.checkpoint.com/download/downloads/products/solution-brief/SB_LightCyber.pdf.
12. HP Unifies Network Security Detection to Identify, Contain and Neutralize Patient Zero Infections. Available: http://www.hp.com/hpinfo/ newsroom/press_kits/2014/HPProtect2014/HPTippingPoint_Advisory.pdf.
13. Finding Advanced Threats Before They Strike: A Review of Damballa Failsafe Advanced Threat Protection and Containment. Available :http://www.sans.org/reading-room/whitepapers/analyst/finding-advanced-threats-strike-review-damballa-failsafe-advanced-threat-protecti-34705.
14. S. J. Kazemitabar, M. Shahbazzadeh, "Stock market fraud detection, a probabilistic approach", Signal and data processing, vol. 17, no. 6, 2020. [
DOI:10.29252/jsdp.17.1.3]
14. کاظمی تبار، سیدجواد، شهباززاده، مجید، «کشف تقلب در بازار بورس اوراق بهادار با استفاده از کاربرد نامساوی چبیشف»، فصلنامة پردازش علائم و دادهها، دورة 17، شمارة 1، صص 3-14، 1399.
15. Y. Kim, S. Y. Sohn, "Stock fraud detection using peer group analysis", Expert Systems with Applications, pp. 8986-8992, 2012. [
DOI:10.1016/j.eswa.2012.02.025]
16. B. Baesense, et al, "Fraud analytics using descriptive, predictive, and social network techniques", Wiley, 2015. [
DOI:10.1002/9781119146841]
17. V. Goldwasser, "Stock market manipulation and short selling", Centre of corporate law and securities regulation, Faculty of law, The University of Melborn, 1999.
18. International Organization of Securities Commissions (IOSC), 2023, Available: https://www.iosco.org.
19. S. S. Huebner, "The Stock Marke", Kessinger Publishing, 2006.
20. A. Franklin, and D. Gale, "Stock-Price Manipulation", Review of FinancialStudies, vol. 5, pp. 503-529, 1992. [
DOI:10.1093/rfs/5.3.503]
21. H. Hamedinia, R.Raei, S. Bajalan, S. Rouhani, "Analysis of Stock Market Manipulation using Generative Adversarial Nets and Denoising Auto-Encode Model", Advances in Mathematical Finance and Applications, 7 (1), pp. 133-151, 2021.
22. Z. Shaeiri, S. J. Kazemitabar, "Fast unsupervised autimobile insurance fraud detection based on spectral ranking of anomalies", International Journal of Engineering, vol. 33, no. 7, pp. 1240-1248, 2020. [
DOI:10.5829/ije.2020.33.07a.10]
23. Z. Shaeiri, S. J. Kazemitabar, Sh. Bijani, M. Talebi, "Behavior-Based online anomaly detection for a nationwide short message service", Journal of AI and data mining, vol. 7, no. 2, pp. 239-247, 2019.
24. J. D. Kirkland et.al., "The NASD regulation advanced detection system (ASD)", AI Magazine, vol. 20, 1999.
25. H. Goldberg et.al., "The ANSD securities observation, news analysis and regulation systems (SONAR)", American Association for Artificial Intelligence (AAAI), 2003.
26. K. Golmohammadi, O. R. Zaiane, "Data mining applications for fraud detection in securities market", Intelligence and Security Informatics Conference (EISIC), 2012. [
DOI:10.1109/EISIC.2012.51]
27. A. Kr, S. Yadav, and Marpe Sora, "Fraud Detection in Financial Statements using Text Mining Methods: A Review", IOP conference series, 2021.
28. Z. Yi, et.al, "Fraud detection in capital markets: A novel machine learning approach", Epert Systems with Applications, Elsevier, vol. 231, 2023. [
DOI:10.1016/j.eswa.2023.120760]
29. S. Kim, J. Hong, Y. Lee, "A GANs-Based Approach for Stock Price Anomaly Detection and Investment Risk Management", Fourth ACM international conference on AI in finance, pp. 1-9, 2023. [
DOI:10.1145/3604237.3626892]
30. J. Neyman, and E. S. Pearson, "On the problem of the most efficient tests of statistical hypotheses", Phil. Trans., pp. 694-706, 1993.
31. S. Lin, and D. J. Costello, "Error Control Coding (2nd Edition)", Pearson, 2014.
32. S. Viaene, G. Dedene, and R. Derig, "Auto claim fraud detection using Bayesian learning neural networks", Expert systems with applications, vol. 29, no. 3, pp. 653-666, 2005. [
DOI:10.1016/j.eswa.2005.04.030]
33. S. Viaene, R. Derrig, and G. Dedene, "A case study of applying boosting naive bayes to claim fraud diagnosis", IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 5, pp. 612-620, 2004. [
DOI:10.1109/TKDE.2004.1277822]
34. S. Viaene, R. Derrig, B. Baesens, and G. Dedene, "A comparison of state-of-the- art classification techniques for expert automobile insurance claim fraud detection" The Journal of Risk and Insurance, vol. 69, no. 3, pp. 373-421, 2002. [
DOI:10.1111/1539-6975.00023]