دوره 19، شماره 1 - ( 3-1401 )                   جلد 19 شماره 1 صفحات 42-39 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Poorali H, Omranpour H. Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search. JSDP. 2022; 19 (1) :39-42
URL: http://jsdp.rcisp.ac.ir/article-1-1162-fa.html
پورعلی حدیثه، عمرانپور حسام. ارائه مدل یادگیر ترکیب کرنل‌ها برای پیش‌بینی سری‌های زمانی براساس رگرسیون بردار پشتیبان و جستجوی فراابتکاری. پردازش علائم و داده‌ها. 1401; 19 (1) :42-39

URL: http://jsdp.rcisp.ac.ir/article-1-1162-fa.html


دانشگاه صنعتی نوشیروانی
چکیده:   (340 مشاهده)
در این مقاله به ارائه روشی برای پیش­بینی سری­زمانی پرداخته شده است. مدلی که در این مقاله ارائه شده بر پایه ترکیب کرنل‌ها و رگرسیون بردار پشتیبان است. رگرسیون بردار پشتیبان با استفاده از کرنل هایش توانایی بالایی در حل مسائل تخمین توابع دارد؛ اما این کرنل­ها پارامترهایی دارند که نیاز به تنظیم دارند. در مدل پیشنهادی کرنل­های مختلف بر روی داده­ها اعمال می­شوند. خروجی کرنل­ها با اعمال یک ضریب، با هم ترکیب می­شوند. این ترکیب باعث می­شود یک فضای ثانویه جدیدی به‌دست آید. دلیل این امر این است که، ممکن است از بین کرنل­های موجود فقط یک تعدادی از آن­ها با ضریب خاصی برای صورت مسأله مفید باشد و ما از این‌که کدام کرنل برای صورت مسأله ما کارا است آگاه نیستیم. همچنین هرکدام از کرنل­ها پارامتر­هایی دارند که باید مقادیر بهینه آن­ها برای دست‌یابی به نتیجه بهتر تعیین شوند؛ از‌این‌رو در مدل ارائه‌شده، یادگیری پارامتر­های کرنل و وزن­های آن­ها توسط بهینه‌ساز گرگ خاکستری انجام می­شود مدل پیشنهادی  روی پنج مجموعه سری­­زمانی استاندارد پیاده­سازی شده­ که نتایج تست براساس معیار RMSE برای سری­زمانی DJ، 58/1، سری­زمانیRadio ، 178/0، سری زمانی Sunspot ، 709/1، نسبت به روش­های دیگر بهتر شده­ است.  همچنین در انتها به تحلیل نتایج، ارزیابی آماری با آزمون ویلکاکسون رتبه علامت­دار و ارائه رابطه برای یافتن اندازه پنجره در مدل پرداخته شده است.
شماره‌ی مقاله: 3
متن کامل [PDF 1569 kb]   (77 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش داده‌های رقمی
دریافت: 1399/5/19 | پذیرش: 1399/10/21 | انتشار: 1401/4/1 | انتشار الکترونیک: 1401/4/1

فهرست منابع
1. [1] E. Kayacan, B. Ulutas and O. Kaynak, "Grey system theory-based models in time series prediction," Expert Systems with Applications, vol. 37, no. 2, pp. 1784-1789, 2010. [DOI:10.1016/j.eswa.2009.07.064]
2. [2] B. Paaben, C. Gopfert and B. Hammer, "Time Series Prediction for Graph in Kernel andDissimilarity Spaces," Neural Processing Letters, no. 48, pp. 669-689, 2018. [DOI:10.1007/s11063-017-9684-5]
3. [3] S. C. Nayak, B. B. Misra and H. S. Behera, "Efficient financial time series prediction with evolutionary virtual data position exploration," Neural Computing and Application, no. 31, pp. 1053-1074, 2019. [DOI:10.1007/s00521-017-3061-1]
4. [4] M. A. Villegas, D. J. Pedregal and J. R. Trapero, "A support vector machine for model selection in demand forecasting application," Computers & Industrial Engineering, vol. 121, pp. 1-7, 2018. [DOI:10.1016/j.cie.2018.04.042]
5. [5] P. Liu, J. Liu and K. Wu, "CNN-FCM: System modeling promotes stability of deep learning in time series prediction," Knowledge-Based Systems, vol. 203, 2020. [DOI:10.1016/j.knosys.2020.106081]
6. [6] J. H. Sadaei, P. Cândido de Lima e Silva, F. Gadelha Guimarães and M. Hisyam Lee, "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, vol. 175, pp. 365-377, 2019. [DOI:10.1016/j.energy.2019.03.081]
7. [7] J. Hu, X. Wang, Y. Zhang, D. Zhang, M. Zhang and J. Xue, "Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network," Neural Processing Letters, 2020. [DOI:10.1007/s11063-020-10319-3]
8. [8] K. Yuan, J. Liu, S. Yang, K. Wu and F. Shen, "Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps," Knowledge-Based Systems, vol. 206, 2020. [DOI:10.1016/j.knosys.2020.106359]
9. [9] J. Wang, Z. Peng, X. Wang, C. Li and J. Wu, "Deep Fuzzy Cognitive Maps for Interpretable Multivariate Time Series Prediction," IEEE Transactions on Fuzzy Systems, pp. 1-1, 2020.
10. [10] S. Yang and J. Liu, "Time Series Forecasting based on High-Order Fuzzy Cognitive Maps and Wavelet Transform," IEEE Transactions on Fuzzy System, vol. 26, no. 6, pp. 3391-3402, 2018. [DOI:10.1109/TFUZZ.2018.2831640]
11. [11] Q. Xiao, "Time series prediction using bayesian filtering model and fuzzy neural networks," Optik - International Journal for Light and Electron Optics, vol. 140, pp. 104-113, 2017. [DOI:10.1016/j.ijleo.2017.03.096]
12. [12] H. Omranpour, F. Azadian, "Presenting a Fuzzy Approach to Optimize Predicting High Order Time series," Signal and Data Processing vol. 15, no. 2, pp. 3-16, 2018. [DOI:10.29252/jsdp.15.2.3]
13. [12] ح. عمرانپور, ف. آزادیان, "ارائه یک رویکرد فازی برای بهینه سازی پیش بینی سری زمانی با مرتبه ی بالا," پردازش علائم و داده¬ها, جلد 15, شماره 2, 1397.
14. [13] C. Bergmeir, R. J. Hyndman and B. Koo, "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics and Data Analysis, vol. 120, pp. 70-83, 2018. [DOI:10.1016/j.csda.2017.11.003]
15. [14] W. Xu, H. Peng, X. Zeng, F. Zhou, X. Tian and X. Peng, "Deep belief network-based AR model for nonlinear time series forecasting," Applied Soft Computing Journal, vol. 77, pp. 605-621, 2019. [DOI:10.1016/j.asoc.2019.02.006]
16. [15] L. Bianchi, M. Dorigo, L. M. Gambardella and W. J. Gutjahr, "A survey on metaheuristics for stochastic combinatorial optimization," Natural Computing, vol. 8, pp. 239-287, 2009. [DOI:10.1007/s11047-008-9098-4]
17. [16] G. Cornuéjols , "Valid inequalities for mixed integer linear programs," Mathematical Programming, vol. 112, pp. 3-44, 2008. [DOI:10.1007/s10107-006-0086-0]
18. [17] M. Avriel, Nonlinear Programming: Analysis and Methods, New York: Dover Publications, 2003.
19. [18] A. H. Land and A. G. Doig, "An automatic method for solving discrete programming problems," 50 Years of Integer Programming 1958-2008, pp. 105-132, 2010. [DOI:10.1007/978-3-540-68279-0_5] [PMID] [PMCID]
20. [19] A. R. Simpson, G. C. Dancy and L. J. Murphy, "Genetic algorithms compared to other techniques for pipe optimization," Journal of water resources planning and management, vol. 120, no. 4, pp. 423-443, 1994. [DOI:10.1061/(ASCE)0733-9496(1994)120:4(423)]
21. [20] S. Mirjalili, "The Ant Lion Optimizer," Advances in Engineering Software, vol. 83, pp. 80-98, 2015. [DOI:10.1016/j.advengsoft.2015.01.010]
22. [21] B. T. Ojemakinde, Support Vector Regression for Non-Stationary Time Series, Knoxville: University of Tennessee, 2006.
23. [22] S. Lin, S. zhang, J. Qiao, H. Liu and G. Yu, "A Parameter Choosing Method of SVR for Time Series Prediction," in The 9th International Conference for Young Computer Scientists, Liaoning, China, 2008. [DOI:10.1109/ICYCS.2008.393]
24. [23] C. Hsin, J. M. Ho and D. T. Lee, "Travel-Time Prediction With Support Vector Regression," IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 276-281, 2004. [DOI:10.1109/TITS.2004.837813]
25. [24] X. Ma, Y. Zhang, H. Cao, S. Zhang and Y. Zhou, "Nonlinear Regression with High-Dimensional Space Mapping for Blood Component Spectral Quantitative Analysis," Journal of Spectroscopy, 2018. [DOI:10.1155/2018/2689750]
26. [25] T. Hofmann, B. Schölkopf and A. J. Smola, "Kernel Methods in Machine Learning," Institute of Mathematical Statistics, vol. 36, no. 3, pp. 1171-1220, 2008. [DOI:10.1214/009053607000000677]
27. [26] J. Xie, "Time Series Prediction Based on Recurrent LS-SVM with Mixed Kernel," in Asia-Pacific Conference on Information Processing, Shenzhen, China, 2009. [DOI:10.1109/APCIP.2009.37] [PMCID]
28. [27] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, 2014. [DOI:10.1016/j.advengsoft.2013.12.007]
29. [28] M. R. Mosavi, M. Khishe and A. Ghamgosar, "CLASSIFICATION OF SONAR DATA SET USING NEURAL NETWORK TRAINED BY GRAY WOLF OPTIMIZATION," Neural Network World, vol. 4, pp. 393-415, 2016. [DOI:10.14311/NNW.2016.26.023]
30. [29] J. Heinermann and O. Kramer, "Precise Wind Power Prediction with SVM Ensemble Regression," in International Conference on Artificial Neural Networks, Hamburg, Germany, 2014. [DOI:10.1007/978-3-319-11179-7_100]
31. [30] K. Wu, J. Liu, P. Liu and S. Yang, "Time Series Prediction Using Sparse Autoencoder and High-order Fuzzy Cognitive Maps," IEEE Transactions on Fuzzy Systems, 2019. [DOI:10.1109/TFUZZ.2019.2956904]
32. [31] J. Shing and R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993. [DOI:10.1109/21.256541]
33. [32] G. Zheng, J. Starck, J. Campbell and F. Murtagh, "Multiscale transforms for filtering financial data streams," Journal of Computational Intelligence in Finance, vol. 7, no. 18-35, 1999.
34. [33] O. Renaud, J. L. Starck and F. Murtagh, "Wavelet-Based Combined Signal Filtering and Prediction," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 6, pp. 1241-1251, 2005. [DOI:10.1109/TSMCB.2005.850182] [PMID]
35. [34] A. B. Geva, "ScaleNet-multiscale neural-network architecture for time series prediction," IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1471-1482, 1998. [DOI:10.1109/72.728396] [PMID]
36. [35] J. Derrac, S. García, D. Molina and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3-18, 2011. [DOI:10.1016/j.swevo.2011.02.002]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.