1. [1] I. Guyon, A. Elisseeff, (2003)," An introduction to variable and feature selection", Journal of Machine Learning Research, Vol.3, pp.1157-1182.
2. [2] I.Guyon, S.Gunn, M.Nikravesh and L.A.Zadeh, (2006), "Feature Extraction: Foundations and Applications", vol. 207, Springer, ISBN-10: 9783540354871. [
DOI:10.1007/978-3-540-35488-8]
3. [3] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos (2013), "A Distributed Wrapper Approach for Feature Selection", ESANN proceedings, Computational Intelligence and Machine Learning, ISBN 978-2-87419-081-0.
4. [4] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos(2015), "A Distributed Feature Selecion Approach Based on a Complexity Measure", Advances in Computational Intelligence, pp. 15-28. [
DOI:10.1007/978-3-319-19222-2_2]
5. [5] G. Chandrashekar and F. Sahin (2014), "A survey on feature selection methods", journal of Computers and Electrical Engineering vol. 40, pp.16-28. [
DOI:10.1016/j.compeleceng.2013.11.024]
6. [6] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos (2015), "Distributed feature selection: An application to microarray data classification", Applied Soft Computing, vol. 30, pp. 136-150. [
DOI:10.1016/j.asoc.2015.01.035]
7. [7] V. Bolón-Canedo, N. Sánchez-Maroño, and J. Cerviño-Rabuñal(2013), "Scaling up feature selection: a distributed filter approach", Advances in Artificial Intelligence, pp. 121-130. [
DOI:10.1007/978-3-642-40643-0_13]
8. [8] L. Morán-Fernández, V. Bolón-Canedo, and A. Alonso-Betanzos (2016), "Centralized vs. distributed feature selection methods based on data complexity measures", Journal of Knowledge-Based Systems, vol. 117 , pp.27-45. [
DOI:10.1016/j.knosys.2016.09.022]
9. [9] L. Mor'an-Fern'andez, V. Bol'on-Canedo, and A. Alonso-Betanzos(2015), "A Time Efficient Approach for Distributed Feature Selection Partitioning by Features", Lecture Notes in Computer Science book series (LNCS), vol. 9422, pp.245-254. [
DOI:10.1007/978-3-319-24598-0_22]
10. [10] L. Yu, H. Liu, (2004)," Efficient feature selection via analysis of relevance and redundancy", J. Mach. Learn. Res. 5 , 1205-1224.
11. [11] C. Ding, H. Peng, (2005) "Minimum redundancy feature selection from microarray gene expression data", Journal of Bioinformatics and computational Biology, Vol.03, No.02, pp.185-205. [
DOI:10.1142/S0219720005001004] [
PMID]
12. [12] R. Kohavi, GH. John (1997), "Wrappers for feature subset selection", Artificial Intelligence, Vol. 97, Issues 1-2, pp.273-324. [
DOI:10.1016/S0004-3702(97)00043-X]
13. [13] J.Li, K.Cheng, S.Wang, F. Morstatter, and R. P. Trevino(2018)," Feature Selection: A Data Perspective", Journal of ACM Computing Surveys (CSUR), Vol. 50 ,Issue 6. [
DOI:10.1145/3136625]
14. [14] A.De Haro Garc'ıa, (2011), "Scaling data mining algorithms. Application to instance and feature selection", Ph.D. Thesis, University of Granada.
15. [15] H. Djellali, N. Ghoualmi Zine and N. Azizi (2016), "Two Stages Feature Selection Based on Filter Ranking Methods and SVMRFE on Medical Applications", Modelling and Implementation of Complex Systems. Lecture Notes in Networks and Systems, Springer, Cham,, vol. 1, pp. 281-293. [
DOI:10.1007/978-3-319-33410-3_20]
16. [16] H. Min and W. Fangfang (2010), "Filter-Wrapper Hybrid Method on Feature Selection ", Second WRI Global Congress on Intelligent Systems (GCIS), pp.98-101. [
DOI:10.1109/GCIS.2010.235]
17. [17] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik (2002), "Gene selection for cancer classification using support vector machines", Journal of Machine Learning, vol. 46, Issue 1-3, pp. 389-422. [
DOI:10.1023/A:1012487302797]
18. [18] D. Boughaci and A.A Alkhawaldeh (2018), "Three local search-based methods for feature selection in credit scoring", Vietnam Journal of Computer Science, May 2018, Vol. 5, Issue 2, pp. 107-121. [
DOI:10.1007/s40595-018-0107-y]
19. [19] Q.Wang , J. Wan, F. Nie , B. Liu , C.Yan , and X. Li (2019), "Hierarchical Feature Selection for Random Projection", IEEE Transactions on Neural Networks and Learning Systems, Vol. 30 , Issue 5, pp. 1581 - 1586. [
DOI:10.1109/TNNLS.2018.2868836] [
PMID]
20. [20] http://archive.ics.uci.edu/ml/datasets/
21. [21] I.Guyon, J.Weston, S.Barnhill and V.Vapnik,(2002), "Gene selection for cancer classificationusing support vector machines, " Jornal of Machine Learning, vol.46, pp.389-422. [
DOI:10.1023/A:1012487302797]
22. [22] H. Peng, F. Long, and C. Ding, (2005), "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy, "IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug.. [
DOI:10.1109/TPAMI.2005.159] [
PMID]
23. [23] M.A. Hall, L.A. Smith, (1998), "Practical feature subset selection for machine learning", Comput. Sci.98,181-191
24. [24] I. Kononenko,(1994)," Estimating attributes: analysis and extensions of RELIEF", Machine Learning: ECML-94, vol. 784, pp 171-182 [
DOI:10.1007/3-540-57868-4_57]
25. [25] M. Robnik-Šikonja and I. Kononenko, (2003), "Theoretical and empirical analysis of ReliefF and RReliefF", Machine learning, vol. 53,Issue:1-2, pp. 23-69. [
DOI:10.1023/A:1025667309714]