1. [1] Azimi J., The investigation of the Ensemble Clustering Diversity. MSc Thesis. Iran University of Science and Technology, 2006.
2. [1] عظیمی ج، " بررسی پراکندگی در خوشهبندی ترکیبی"، پایاننامه کارشناسیارشد، دانشگاه علم و صنعت ایران، خرداد 1386.
3. [2] Alizadeh A., Minaei-Bidgoli B., Parvin H. Cluster ensemble selection based on a new cluster stability measure. Intell. Data Anal. 18(3): 389-408, 2014. [
DOI:10.3233/IDA-140647]
4. [3] Jain A., Murty M. N., and Flynn P. (1999), Data clustering: A review. ACM Computing Surveys, 31(3):264-323. [
DOI:10.1145/331499.331504]
5. [4] Faceli K., Marcilio C.P. Souto d., Multi-objective Clustering Ensemble, Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06), 2006. [
DOI:10.1109/HIS.2006.264934]
6. [5] Strehl A. and Ghosh J., "Cluster ensembles - a knowledge reuse framework for combining multiple partitions". Journal of Machine Learning Research, 3(Dec):583-617, 2002.
7. [6] Fred, A. and Jain, A.K. "Data Clustering Using Evidence Accumulation", Proc. of the 16th Intl. Conf. on Pattern Recognition, ICPR02, Quebec City, pp. 276 - 280, 2002.
8. [7] Topchy, A., Jain, A.K. and Punch, W.F., "Combining Multiple Weak Clusterings", Proc. 3d IEEE Intl. Conf. on Data Mining, pp. 331-338, 2003.
9. [8] Fred A. and Lourenco A. (2008), "Cluster Ensemble Methods: from Single Clusterings to Combined Solutions", Studies in Computational Intelligence (SCI), 126, 3-30. [
DOI:10.1007/978-3-540-78981-9_1]
10. [9] Ayad H.G. and Kamel M.S., Cumulative Voting Consensus Method for Partitions with a Variable Number of Clusters, IEEE Trans. on Pattern Analysis and Machine Intelligence, VOL. 30, NO. 1, 160-173, 2008. [
DOI:10.1109/TPAMI.2007.1138] [
PMID]
11. [10] Minaei-Bidgoli B., Topchy A. and Punch W.F., "Ensembles of Partitions via Data Resampling", in Proc. Intl. Conf. on Information Technology, ITCC 04, Las Vegas, 2004. [
DOI:10.1109/ITCC.2004.1286629]
12. [11] Parvin H., Minaei-Bidgoli B. "A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm". Pattern Anal. Appl. 18(1): 87-112, 2015. [
DOI:10.1007/s10044-013-0364-4]
13. [12] Alizadeh H., Minaei-Bidgoli B., Parvin H. Optimizing Fuzzy Cluster Ensemble in String Representation. IJPRAI 27(2), 2013. [
DOI:10.1142/S0218001413500055]
14. [13] Parvin H., Minaei-Bidgoli B., Alinejad-Rokny H., Punch W.F. "Data weighing mechanisms for clustering ensembles". Computers & Electrical Engineering 39(5): 1433-1450, 2013. [
DOI:10.1016/j.compeleceng.2013.02.004]
15. [14] Barthelemy J.P. and Leclerc B., The median procedure for partition, In Partitioning Data Sets, AMS DIMACS Series in Discrete Mathematics, Cox, I. J. et al eds., 19, pp. 3-34, 1995. [
DOI:10.1090/dimacs/019/01]
16. [15] Fern X.Z., and Lin W., "Cluster Ensemble Selection". Statistical Analysis and Data Mining 1(3): 128-141, 2008. [
DOI:10.1002/sam.10008]
17. [16] Parvin H., Mirnabibaboli M., Alinejad-Rokny H. "Proposing a classifier ensemble framework based on classifier selection and decision tree". Eng. Appl. of AI 37: 34-42, 2015. [
DOI:10.1016/j.engappai.2014.08.005]
18. [17] Dudoit S. and Fridlyand, J., Bagging to improve the accuracy of a clustering procedure, Bioinformatics, 19 (9), pp. 1090-1099, 2003. [
DOI:10.1093/bioinformatics/btg038] [
PMID]
19. [18] Fischer B. and Buhmann J.M., "Bagging for path-based clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1411-1415, 2003. [
DOI:10.1109/TPAMI.2003.1240115]
20. [19] Fred A. and Jain A.K., "Robust data clustering", in: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR ,USA, vol. II, pp. 128-136, 2003.
21. [20] Fred A.L. and Jain A.K. "Combining Multiple Clusterings Using Evidence Accumulation". IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(6):835-850, 2005. [
DOI:10.1109/TPAMI.2005.113] [
PMID]
22. [21] Kuncheva L.I. and Hadjitodorov S. "Using diversity in cluster ensembles". In Proc. of IEEE Intl. Conference on Systems, Man and Cybernetics, pages 1214-1219, 2004.
23. [22] Kuncheva L.I. and Whitaker C. J., "Measures of diversity in classifier ensembles", Machine Learning, 2003.
24. [23] Baumgartner R., Somorjai R., Summers R., Richter W., Ryner L., and Jarmasz M., Resampling as a Cluster Validation Technique in fMRI, JOURNAL OF MAGNETIC RESONANCE IMAGING 11: pp. 228-231, 2000.
https://doi.org/10.1002/(SICI)1522-2586(200002)11:2<228::AID-JMRI23>3.0.CO;2-Z [
DOI:10.1002/(SICI)1522-2586(200002)11:23.0.CO;2-Z]
25. [24] Breckenridge J., Replicating cluster analysis: Method, consistency and validity, Multivariate Behavioral research, 1989. [
DOI:10.1207/s15327906mbr2402_1] [
PMID]
26. [25] Shamiry O., Tishby N., "Cluster Stability for Finite Samples", 21st Annual Conference on Neural Information Processing Systems (NIPS07), 2007.
27. [26] Roth V., Braun M.L., Lange T., and Buhmann J.M., "Stability-Based Model Order Selection in Clustering with Applications to Gene Expression Data", ICANN 2002, LNCS 2415, pp. 607-612, 2002a. [
DOI:10.1007/3-540-46084-5_99]
28. [27] Roth V., Lange T., Braun M., and Buhmann J., A "Resampling Approach to Cluster Validation", Intl. Conf. on Computational Statistics, COMPSTAT, 2002b. [
DOI:10.1007/978-3-642-57489-4_13]
29. [28] Saha A., Das S. "Categorical fuzzy k-modes clustering with automated feature weight learning". Neurocomputing 166: 422-435, 2015. [
DOI:10.1016/j.neucom.2015.03.037]
30. [29] Law M.H.C., Topchy A.P., and Jain A.K. "Multiobjective data clustering". In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 424-430, Washington D.C, 2004.
31. [30] Akbari E., Dahlan H.M., Ibrahim R., Alizadeh H.: Hierarchical cluster ensemble selection. Eng. Appl. of AI 39: 146-156 2015. [
DOI:10.1016/j.engappai.2014.12.005]
32. [31] Iam-On, N. and T. Boongoen, "Diversity-driven generation of link-based cluster ensemble and application to data classification", Expert Systems with Applications, 42(21): p. 8259-8273, 2015. [
DOI:10.1016/j.eswa.2015.06.051]
33. [32] Melanie M., "An Introduction to Genetic Algorithms", A Bradford Book The MIT Press, Cambridge, Massachusetts. London, England, Fifth printing, 1999.
34. [33] Aarts E. H. L. and Korst J. Simulated Annealing and Boltzmann Machines, John Wiley & Sons, Essex, U.K, 1989.
35. [34] Kennedy J and Eberhart R.C., "Particle Swarm Optimization", Proceedings of IEEE International Conference on Neural Networks", Piscataway, NJ, pp. 1942-1948, 1995.
36. [35] Fred A. and Jain A.K., "Learning Pairwise Similarity for Data Clustering", In Proc. of the 18th Int. Conf. on Pattern Recognition (ICPR'06), 2006. [
DOI:10.1109/ICPR.2006.754]
37. [36] Fridlyand J. and Dudoit S. "Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method". Stat. Berkeley Tech Report. No. 600, 2001.
38. [37] X. Fern, C. Brodley, "Solving cluster ensemble problems by bipartite graph partitioning", Proc. of the 21st International Conference on Machine Learning, 2004. [
DOI:10.1145/1015330.1015414]
39. [38] D. Huang, J. Lai, C. D. Wang, "Ensemble clustering using factor graph", Pattern Recognition, vol. 50, pp. 131-142, 2016. [
DOI:10.1016/j.patcog.2015.08.015]
40. [39] M. Selim, E. Ertunc, "Combining multiple clusterings using similarity graph", Pattern Recognition, vol. 44, no. 3, 694-703, 2011. [
DOI:10.1016/j.patcog.2010.09.008]
41. [40] C. Boulis, M. Ostendorf, "Combining multiple clustering systems", Proc. European Conf. Principles and Practice of Knowledge Discovery in Databases, 2004. [
DOI:10.1007/978-3-540-30116-5_9]
42. [41] A. Topchy, B. Minaei-Bidgoli, A. Jain, "Adaptive clustering ensembles", Proc. the 17th International Conference on Pattern Recognition, 2004. [
DOI:10.1109/ICPR.2004.1334105]
43. [42] P. Hore, L. O. Hall, B. Goldgo, "A scalable framework for cluster ensembles", Pattern Recognition, vol. 42, no. 5, 676-688, 2009. [
DOI:10.1016/j.patcog.2008.09.027] [
PMID] [
]
44. [43] B. Long, Z. Zhang, P. S. Yu, "Combining multiple clusterings by soft correspondence", Proc. the 4th IEEE International Conference on Data Mining, 2005.
45. [44] D. Cristofor, D. Simovici, "Finding median partitions using information theoretical based genetic algorithms", J. Universal Computer Science, vol. 8, no. 2, pp. 153-172, 2002.
46. [45] A. Topchy, A. Jain, W. Punch, "Clustering ensembles: Models of consensus and weak partitions", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 12, 1866-1881, 2005. [
DOI:10.1109/TPAMI.2005.237] [
PMID]
47. [46] H. Wang, H. Shan, A. Banerjee, "Bayesian cluster ensembles", Statistical Analysis and Data Mining, vol. 4, no. 1, pp. 54-70, 2011. [
DOI:10.1002/sam.10098]
48. [47] Z. He, X. Xu, S. Deng, "A cluster ensemble method for clustering categorical data", Information Fusion, vol. 6, no. 2, pp. 143C151, 2005. [
DOI:10.1016/j.inffus.2004.03.001]
49. [48] N. Nguyen, R. Caruana, "Consensus Clusterings", Proc. IEEE Intl Conf. Data Mining, pp. 607-612, 2007. [
DOI:10.1109/ICDM.2007.73]
50. [49] Z. Huang, "Extensions to the kmeans algorithm for clustering large data sets with categorical values", Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 283-304, 1998. [
DOI:10.1023/A:1009769707641]
51. [50] S. Abbasi, S. Nejatian, H. Parvin, V. Rezaie &K. Bagherifard, "Clustering ensemble selection considering quality and diversity, " Artificial Intelligence Review, vol. 52, PP. 1311-1340, Springer Nature B.V. 2018,
https://doi.org/10.1007/s10462-018-9642-2 [
DOI:10.1007/s10462-018-9642-2.]
52. [51] A. Bagherinia, B. Minaei-Bidgoli, M. Hossinzadeh, H. Parvin, "Elite fuzzy clustering ensemble based on clustering diversity and quality measures, " Springer Science+Business Media, LLC, part of Springer Nature, Applied Intelligence, 49, PP. 1724-1747, 2019.
https://doi.org/10.1007/s10489-018-1332-x [
DOI:10.1007/s10489-018-1332-x.]
53. [52] A. Nazari, A. Dehghan, S Nejatian, V. Rezaie, H. Parvin, "A comprehensive study of clustering ensemble weighting based on cluster quality and diversity, " Pattern Analysis and Applications, vol. 22, pp.133-145, 2019. [
DOI:10.1007/s10044-017-0676-x]
54. [53] M. Mojarad, S. Nejatian, H. Parvin, M. Mohammadpoor, "A fuzzy clustering ensemble based on cluster clustering and iterative Fusion of base clusters, " The International Journal of Research on Systems for Real Life Complex Problems, Applied Intelligence vol. 49, pp. 2567-2581, 2019. [
DOI:10.1007/s10489-018-01397-x]
55. [54] Z. Chen, A. Bagherinia B. Minaei-Bidgoli, H. Parvin, Pho KH. Fuzzy Clustering Ensemble Considering Cluster Dependability. International Journal on Artificial Intelligence Tools. 2021 Mar 26;30(02):2150007 [
DOI:10.1142/S021821302150007X]
56. [55] V. Berikov, "A probabilistic model of fuzzy clustering ensemble." Pattern Recognition and Image Analysis 28, no. 1 (2018): 1-10. [
DOI:10.1134/S1054661818010029]
57. [56] moradi M, nejatian S, parvin H, bagherifard K, rezaei V. Clustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization. JSDP 2021; 18 (3) :127-146 [
DOI:10.52547/jsdp.18.3.127]
58. [57] Omidvar M, Nejatian S, Parvin H, Bagherifard K, Rezaie V. Providing an algorithm for solving general optimization problems based on Domino theory. JSDP 2022; 19 (2) :87-106 [
DOI:10.52547/jsdp.19.2.87]