1. [1] A. Java, X. Song, T. Finin, and B. Tseng, "Why we twitter: understanding microblogging usage and communities," in Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, 2007, pp. 56-65. [
DOI:10.1145/1348549.1348556]
2. [2] K. Starbird, L. Palen, A. L. Hughes, and S. Vieweg, "Chatter on the red: what hazards threat reveals about the social life of microblogged information," in Proceedings of the 2010 ACM conference on Computer supported cooperative work, 2010, pp. 241-250. [
DOI:10.1145/1718918.1718965]
3. [3] G. Cai, H. Wu, and R. Lv, "Rumors detection in chinese via crowd responses," in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 2014, pp. 912-917. [
DOI:10.1109/ASONAM.2014.6921694]
4. [4] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, "Detection and resolution of rumours in social media: A survey," ACM Computing Surveys (CSUR), vol. 51, pp. 1-36, 2018. [
DOI:10.1145/3161603]
5. [5] A. Ritter, C. Cherry, and B. Dolan, "Unsupervised modeling of twitter conversations," in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010, pp. 172-180.
6. [6] J. A. Reshi and R. Ali, "Rumor proliferation and detection in Social Media: A Review," in 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, pp. 1156-1160. [
DOI:10.1109/ICACCS.2019.8728321]
7. [7] S. M. Alzanin and A. M. Azmi, "Detecting rumors in social media: A survey," Procedia computer science, vol. 142, pp. 294-300, 2018. [
DOI:10.1016/j.procs.2018.10.495]
8. [8] A. Bondielli and F. Marcelloni, "A survey on fake news and rumour detection techniques," Information Sciences, vol. 497, pp. 38-55, 2019. [
DOI:10.1016/j.ins.2019.05.035]
9. [9] J. Cao, J. Guo, X. Li, Z. Jin, H. Guo, and J. Li, "Automatic rumor detection on microblogs: A survey," arXiv preprint arXiv:1807.03505, 2018.
10. [10] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, "Detection and resolution of rumours in social media: A survey," arXiv preprint arXiv:1704.00656, 2017.
11. [11] C. Castillo, M. Mendoza, and B. Poblete, "Information credibility on twitter," in Proceedings of the 20th international conference on World wide web, 2011, pp. 675-684. [
DOI:10.1145/1963405.1963500]
12. [12] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, "Prominent features of rumor propagation in online social media," in Data Mining (ICDM), 2013 IEEE 13th International Conference on, 2013, 2013, pp. 1103-1108. [
DOI:10.1109/ICDM.2013.61] [
PMID] [
PMCID]
13. [13] F. Yang, Y. Liu, X. Yu, and M. Yang, "Automatic detection of rumor on sina weibo," in Proceedings of the ACM SIGKDD workshop on mining data semantics, 2012, pp. 1-7. [
DOI:10.1145/2350190.2350203]
14. [14] G. Cai, H. Wu, and R. Lv, "Rumors detection in Chinese via crowd responses," in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 912-917. [
DOI:10.1109/ASONAM.2014.6921694]
15. [15] S. Goel, D. J. Watts, and D. G. Goldstein, "The structure of online diffusion networks," in Proceedings of the 13th ACM conference on electronic commerce, 2012, pp. 623-638. [
DOI:10.1145/2229012.2229058]
16. [16] R. Cowan and N. Jonard, "Network structure and the diffusion of knowledge," Journal of economic Dynamics and Control, vol. 28, pp. 1557-1575, 2004. [
DOI:10.1016/j.jedc.2003.04.002]
17. [17] A. Ganesh, L. Massoulié, and D. Towsley, "The effect of network topology on the spread of epidemics," in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., 2005, pp. 1455-1466.
18. [18] V. Lampos, T. De Bie, and N. Cristianini, "Flu detector-tracking epidemics on Twitter," in Joint European conference on machine learning and knowledge discovery in databases, 2010, pp. 599-602. [
DOI:10.1007/978-3-642-15939-8_42]
19. [19] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, "Measuring user influence in twitter: The million follower fallacy," Icwsm, vol. 10, p. 30, 2010.
20. [20] M. Dash and H. Liu, "Feature selection for classification," Intelligent data analysis, vol. 1, pp. 131-156, 1997. [
DOI:10.3233/IDA-1997-1302]
21. [21] D. Shah and T. Zaman, "Rumors in a network: Who's the culprit?," IEEE Transactions on information theory, vol. 57, pp. 5163-5181, 2011. [
DOI:10.1109/TIT.2011.2158885]
22. [22] D. J. Watts and P. S. Dodds, "Influentials, networks, and public opinion formation," Journal of consumer research, vol. 34, pp. 441-458, 2007. [
DOI:10.1086/518527]
23. [23] P. Cogan, M. Andrews, M. Bradonjic, W. S. Kennedy, A. Sala, and G. Tucci, "Reconstruction and analysis of twitter conversation graphs," in Proceedings of the First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research, 2012, pp. 25-31. [
DOI:10.1145/2392622.2392626]
24. [24] R. Nishi, T. Takaguchi, K. Oka, T. Maehara, M. Toyoda, K.-i. Kawarabayashi, et al., "Reply trees in twitter: data analysis and branching process models," Social Network Analysis and Mining, vol. 6, p. 26, 2016. [
DOI:10.1007/s13278-016-0334-0]
25. [25] M. Mendoza, B. Poblete, and C. Castillo, "Twitter Under Crisis: Can we trust what we RT?," in Proceedings of the first workshop on social media analytics, 2010, pp. 71-79. [
DOI:10.1145/1964858.1964869]
26. [26] F. Jin, W. Wang, L. Zhao, E. R. Dougherty, Y. Cao, C.-T. Lu, et al., "Misinformation propagation in the age of twitter," IEEE Computer, vol. 47, pp. 90-94, 2014. [
DOI:10.1109/MC.2014.361]
27. [27] S. Vosoughi, M. N. Mohsenvand, and D. Roy, "Rumor gauge: predicting the veracity of rumors on twitter," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 11, pp. 50, 2017. [
DOI:10.1145/3070644]
28. [28] S. Vosoughi, D. Roy, and S. Aral, "The spread of true and false news online," Science, vol. 359, pp. 1146-1151, 2018. [
DOI:10.1126/science.aap9559] [
PMID]
29. [29] S. Kwon, M. Cha, and K. Jung, "Rumor detection over varying time windows," PloS one, vol. 12, p. e0168344, 2017. [
DOI:10.1371/journal.pone.0168344] [
PMID] [
PMCID]
30. [30] A. Gupta and P. Kumaraguru, "Credibility ranking of tweets during high impact events," in Proceedings of the 1st workshop on privacy and security in online social media, 2012, pp. 2. [
DOI:10.1145/2185354.2185356]
31. [31] J. Ma, W. Gao, and K.-F. Wong, "Detect rumors on Twitter by promoting information campaigns with generative adversarial learning," in The World Wide Web Conference, 2019, pp. 3049-3055. [
DOI:10.1145/3308558.3313741]
32. [32] A. Alsaeedi and M. Al-Sarem, "Detecting Rumors on Social Media Based on a CNN Deep Learning Technique," Arabian Journal for Science and Engineering, pp. 1-32, 2020. [
DOI:10.1007/s13369-020-04839-2]
33. [33] S. Santhoshkumar and L. D. Babu, "Earlier detection of rumors in online social networks using certainty-factor-based convolutional neural networks," Social Network Analysis and Mining, vol. 10, pp. 1-17, 2020. [
DOI:10.1007/s13278-020-00634-x]
34. [34] M. Z. Asghar, A. Habib, A. Habib, A. Khan, R. Ali, and A. Khattak, "Exploring deep neural networks for rumor detection," Journal of Ambient Intelligence and Humanized Computing, pp. 1-19, 2019. [
DOI:10.1007/s12652-019-01527-4]
35. [35] L. Li, G. Cai, and N. Chen, "A rumor events detection method based on deep bidirectional GRU neural network," in 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 2018, pp. 755-759. [
DOI:10.1109/ICIVC.2018.8492819]
36. [36] C. Castillo, M. Mendoza, and B. Poblete, "Predicting information credibility in time-sensitive social media," Internet Research, vol. 23, pp. 560-588, 2013. [
DOI:10.1108/IntR-05-2012-0095]
37. [37] S. Kwon, M. Cha, and K. Jung, "Rumor detection over varying time windows," PloS one, vol. 12, 2017. [
DOI:10.1371/journal.pone.0168344] [
PMID] [
PMCID]
38. [38] G. Giasemidis, C. Singleton, I. Agrafiotis, J. R. Nurse, A. Pilgrim, C. Willis, et al., "Determining the veracity of rumours on Twitter," in International Conference on Social Informatics, 2016, pp. 185-205. [
DOI:10.1007/978-3-319-47880-7_12]
39. [39] S. Kwon and M. Cha, "Modeling Bursty Temporal Pattern of Rumors," in ICWSM, 2014.
40. [40] A. Zubiaga, M. Liakata, and R. Procter, "Learning reporting dynamics during breaking news for rumour detection in social media," arXiv preprint arXiv:1610.07363, 2016. [
DOI:10.1007/978-3-319-67217-5_8]
41. [41] A. Zubiaga, M. Liakata, R. Procter, K. Bontcheva, and P. Tolmie, "Crowdsourcing the annotation of rumourous conversations in social media," in Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 347-353. [
DOI:10.1145/2740908.2743052]
42. [42] F. Ferri, P. Pudil, M. Hatef, and J. Kittler, "Comparative study of techniques for large-scale feature selection," in Machine Intelligence and Pattern Recognition. vol. 16, ed: Elsevier, 1994, pp. 403-413. [
DOI:10.1016/B978-0-444-81892-8.50040-7]
43. [43] C. Chen, Andy Liaw, and Leo Breiman, "Using random forest to learn imbalanced data," University of California, Berkeley 110 pp. 1-12., 2004.
44. [44] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, "RUSBoost: A hybrid approach to alleviating class imbalance," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, pp. 185-197, 2009. [
DOI:10.1109/TSMCA.2009.2029559]
45. [45] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, "Evaluation measures for models assessment over imbalanced data sets," J Inf Eng Appl, vol. 3, 2013. [
DOI:10.5121/ijdkp.2013.3402]
46. [46] C. R. Sunstein, On rumors: How falsehoods spread, why we believe them, and what can be done: Princeton University Press, 2014. [
DOI:10.1515/9781400851225] [
PMCID]
47. [47] A. Poulsen, "Why People Gossip and How to Avoid it," 2013.
48. [48] J. W. Pennebaker, M. R. Mehl, and K. G. Niederhoffer, "Psychological aspects of natural language use: Our words, our selves," Annual review of psychology, vol. 54, pp. 547-577, 2003. [
DOI:10.1146/annurev.psych.54.101601.145041] [
PMID]
49. [49] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, "The development and psychometric properties of LIWC2015," 2015.
50. [50] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, "Prominent features of rumor propagation in online social media," in 2013 IEEE 13th International Conference on Data Mining, 2013, pp. 1103-1108. [
DOI:10.1109/ICDM.2013.61] [
PMID] [
PMCID]
51. [51] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst, "Patterns of cascading behavior in large blog graphs," in Proceedings of the 2007 SIAM international conference on data mining, 2007, pp. 551-556. [
DOI:10.1137/1.9781611972771.60]
52. [52] L. Tamine, L. Soulier, L. Ben Jabeur, F. Amblard, C. Hanachi, G. Hubert, et al., "Social media-based collaborative information access: Analysis of online crisis-related twitter conversations," in Proceedings of the 27th ACM Conference on Hypertext and Social Media, 2016, pp. 159-168. [
DOI:10.1145/2914586.2914589]
53. [53] Z.Jahanbakhsh-Nagadeh, M.Feizi-Derakhshi, A.Sharifi, "A Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks", JSDP, 2021, pp.50-29.