Volume 21, Issue 1 (6-2024)                   JSDP 2024, 21(1): 113-124 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hamidzadeh J, Moradi M. Improving Collaborative Recommender Systems by Integrating Fuzzy C-Ordered Means Clustering and Chaotic Self-Adaptive Particle Swarm Optimization Algorithm. JSDP 2024; 21 (1) : 9
URL: http://jsdp.rcisp.ac.ir/article-1-1129-en.html
Sadjad University of Technology
Abstract:   (567 Views)
Recommender systems are a subset of intelligent information filtering systems that discovers user interests and provide user-friendly recommendations. User-based collaborative filtering recommender systems is one of the most important types of recommender systems. However, they are faced with voluminous data and sparsity problems that have negative effects on the performance of the systems. In the proposed method, fuzzy C-ordered means clustering algorithm is integrated with a chaotic self-adaptive particle swarm evolutionary algorithm for clustering users. The proposed method aims to improve the rating prediction in large sparse datasets and reduce the negative impact of outliers and noisy data. Experiments have been conducted on real-world datasets to evaluate and prove the efficiency of the proposed method. Experimental results show the superiority of the proposed method that the state-of-the-art methods based on prediction error criteria, accuracy rates, and the computational time.
Article number: 9
Full-Text [PDF 842 kb]   (137 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2020/03/30 | Accepted: 2024/02/17 | Published: 2024/08/3 | ePublished: 2024/08/3

References
1. P. Lops, M. Polignano, C. Musto, A. Silletti, and G. Semeraro, "ClayRS: An end-to-end framework for reproducible knowledge-aware recommender systems," Information Systems, vol. 119, p. 102273, 2023, doi: https://doi.org/10.1016/j.is.2023.102273 [DOI:10.1016/ j.is.2023.102273.]
2. J.-C. Zhang, A. M. Zain, K.-Q. Zhou, X. Chen, and R.-M. Zhang, "A review of recommender systems based on knowledge graph embedding," Expert Systems with Applications, vol. 250, p. 123876, 2024, doi: https://doi.org/10.1016/j.eswa.2024.123876 [DOI:10.1016 /j.eswa.2024.123876.]
3. [A. Ghannadrad, M. Arezoumandan, L. Candela, and D. Castelli, "Recommender systems for science: A basic taxonomy," 2022, pp. 1-8.
4. K. Saini and A. Singh, "A content-based recommender system using stacked LSTM and an attention-based autoencoder," Measurement: Sensors, p. 100975, 2023, doi: https://doi.org/ 10.1016/ j.measen.2023.100975. https://doi.org/10.1016/j.measen.2023.100975 [DOI:10.1016/ j.measen.2023.100975.]
5. [P. B. Thorat, R. Goudar, and S. Barve, "Survey on collaborative filtering, content-based filtering and hybrid recommendation system," International Journal of Computer Applications, vol. 110, no. 4, 2015. [DOI:10.5120/19308-0760]
6. [M. Moradi and J. Hamidzadeh, "Ensemble-based Top-k Recommender System Considering Incomplete Data," Journal of AI and Data Mining, 2019.
7. [X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in artificial intelligence, vol. 2009, 2009. [DOI:10.1155/2009/421425]
8. C. C. Aggarwal, Recommender systems. Springer, 2016. [DOI:10.1007/978-3-319-29659-3]
9. p. bahrani, B. Minaei Bidgoli, H. Parvin, M. Mirzarezaee, and A. Keshavarz, "An Ontological Hybrid Recommender System for Dealing with Cold Start Problem," jsdp, vol. 19, no. 1, pp. 1-18, 2022, doi: 10.52547/jsdp.19.1.1. [DOI:10.52547/jsdp.19.1.1]
10. R. Yera and L. Martinez, "Fuzzy tools in recommender systems: A survey," International Journal of Computational Intelligence Systems, vol. 10, no. 1, pp. 776-803, 2017. [DOI:10.2991/ijcis.2017.10.1.52]
11. E. G. Muñoz, J. Parraga-Alava, J. Meza, J. J. Proaño Morales, and S. Ventura, "Housing fuzzy recommender system: A systematic literature review," Heliyon, vol. 10, no. 5, p. e26444, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e26444 [DOI:10.1016/j.heliyon.2024.e26444.]
12. F. Houshmand-Nanehkaran, S. M. Lajevardi, and M. Mahlouji-Bidgholi, "Optimization of fuzzy similarity by genetic algorithm in user-based collaborative filtering recommender systems," Expert Systems, vol. 39, no. 4, p. e12893, 2022, doi: https://doi.org/10.1111/exsy.12893 [DOI:10.1111/exsy.12893.]
13. m. robati anaraki and n. riahi, "An evolutionary approach for automating the selection of optimum Algorithm in Collaborative Filtering Recommender Systems," jsdp, vol. 20, no. 1, pp. 59-78, 2023. [Online]. Available: http://jsdp.rcisp.ac.ir/article-1-1206-en.html. [DOI:10.61186/jsdp.20.1.59]
14. H. Koohi and K. Kiani, "User based Collaborative Filtering using fuzzy C-means," Measurement, vol. 91, pp. 134-139, 2016. [DOI:10.1016/j.measurement.2016.05.058]
15. R. Katarya and O. P. Verma, "An effective web page recommender system with fuzzy c-mean clustering," Multimedia Tools and Applications, vol. 76, no. 20, pp. 21481-21496, 2017. [DOI:10.1007/s11042-016-4078-7]
16. X. Li and D. Li, "Improved Hybrid Collaborative Filtering Algorithm Based on K-Means," in International Conference on Applications and Techniques in Cyber Security and Intelligence, 2018: Springer, pp. 928-934. [DOI:10.1007/978-3-319-98776-7_111]
17. N. K. Manikandan and M. Kavitha, "A content recommendation system for e-learning using enhanced Harris Hawks Optimization, Cuckoo search and DSSM," Journal of Intelligent & Fuzzy Systems, no. Preprint, pp. 1-14, 2023. [DOI:10.3233/JIFS-213422]
18. B. Alhijawi and Y. Kilani, "A collaborative filtering recommender system using genetic algorithm," Information Processing & Management, vol. 57, no. 6, p. 102310, 2020, doi: https://doi.org/10.1016/j.ipm.2020.102310 [DOI:10.1016/j.ipm.2020.102310.]
19. R. Paulavičius, L. Stripinis, S. Sutavičiūtė, D. Kočegarov, and E. Filatovas, "A novel greedy genetic algorithm-based personalized travel recommendation system," Expert Systems with Applications, vol. 230, p. 120580, 2023. [DOI:10.1016/j.eswa.2023.120580]
20. R. Katarya and O. P. Verma, "A collaborative recommender system enhanced with particle swarm optimization technique," Multimedia Tools and Applications, vol. 75, no. 15, pp. 9225-9239, 2016. [DOI:10.1007/s11042-016-3481-4]
21. R. Katarya, "Movie recommender system with metaheuristic artificial bee," Neural Computing and Applications, vol. 30, no. 6, pp. 1983-1990, 2018. [DOI:10.1007/s00521-017-3338-4]
22. R. Katarya and O. P. Verma, "Recommender system with grey wolf optimizer and FCM," Neural Computing and Applications, vol. 30, no. 5, pp. 1679-1687, 2018. [DOI:10.1007/s00521-016-2817-3]
23. R. Katarya and O. P. Verma, "An effective collaborative movie recommender system with cuckoo search," Egyptian Informatics Journal, vol. 18, no. 2, pp. 105-112, 2017. [DOI:10.1016/j.eij.2016.10.002]
24. S. Yadav and S. Nagpal, "An Improved Collaborative Filtering Based Recommender System using Bat Algorithm," Procedia computer science, vol. 132, pp. 1795-1803, 2018. [DOI:10.1016/j.procs.2018.05.155]
25. V. Vellaichamy and V. Kalimuthu, "Hybrid Collaborative Movie Recommender System Using Clustering and Bat Optimization," International Journal of Intelligent Engineering and Systems, vol. 10, no. 5, pp. 38-47, 2017. [DOI:10.22266/ijies2017.1031.05]
26. J. M. Leski, "Fuzzy c-ordered-means clustering," Fuzzy Sets and Systems, vol. 286, pp. 114-133, 2016. [DOI:10.1016/j.fss.2014.12.007]
27. J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995 1995, vol. 4, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968. [DOI:10.1109/ICNN.1995.488968]
28. Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive particle swarm optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009. [DOI:10.1109/TSMCB.2009.2015956]
29. Y. Shi and R. C. Eberhart, "Fuzzy adaptive particle swarm optimization," in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 2001, vol. 1: IEEE, pp. 101-106. [DOI:10.1109/CEC.2001.934377]
30. R. Sadeghi and J. Hamidzadeh, "Automatic support vector data description," Soft Computing, vol. 22, no. 1, pp. 147-158, 2018. [DOI:10.1007/s00500-016-2317-5]
31. J. Hamidzadeh, R. Sadeghi, and N. Namaei, "Weighted support vector data description based on chaotic bat algorithm," Applied Soft Computing, vol. 60, pp. 540-551, 2017. [DOI:10.1016/j.asoc.2017.07.038]
32. B. Alatas, E. Akin, and A. B. Ozer, "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, vol. 40, no. 4, pp. 1715-1734, 2009. [DOI:10.1016/j.chaos.2007.09.063]
33. R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, X.-Z. Gao, and V. Indragandhi, "A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city," Future Generation Computer Systems, vol. 83, pp. 653-673, 2018. [DOI:10.1016/j.future.2017.08.060]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing