1. [1] R. Prasad, "OFDM for wireless communications systems", Artech House, 2004.
2. [2] Y. Rahmatallah, S. Mohan, "Peak-to-average power ratio reduction in ofdm systems: A survey and taxonomy", IEEE communications surveys & tutorials, vol. 15, no. 4, pp. 1567-1592, 2013. [
DOI:10.1109/SURV.2013.021313.00164]
3. [3] F. Sandoval, G. Poitau, F. Gagnon, "Hybrid peak-to-average power ratio reduction techniques: Review and performance comparison", IEEE Access, vol. 5, pp. 27145-27161, 2017. [
DOI:10.1109/ACCESS.2017.2775859]
4. [4] K. Anoh, C. Tanriover, B. Adebisi, "On the optimization of iterative clipping and filtering for papr reduction in ofdm systems", IEEE Access, vol. 5, pp. 12004-12013, 2017. [
DOI:10.1109/ACCESS.2017.2711533]
5. [5] S. Peng, Z. Yuan, "A novel criterion for designing of nonlinear companding functions for peak-to-average power ratio reduction in multicarrier transmission systems", Wireless Networks, vol. 24, no. 2, pp. 581-595, 2018. [
DOI:10.1007/s11276-016-1356-2]
6. [6] I. Baig, V. Jeoti, A. A. Ikram, M. Ayaz, "Papr reduction in mobile wimax: a novel dst precoding based random interleaved ofdma uplink system", Wireless networks, vol. 20, no. 5, pp. 1213-1222, 2014. [
DOI:10.1007/s11276-013-0671-0]
7. [7] M. M. Hasan, "A novel cvm precoding scheme for papr reduction in ofdm transmissions", Wireless networks, vol. 20, no. 6, pp. 1573-1581, 2014. [
DOI:10.1007/s11276-014-0692-3]
8. [8] A. A. Sharifi, "A new post-coding approach for PAPR reduction in DC-biased optical OFDM systems", Optoelectronics Letters, vol. 15, no. 4, pp. 302-305, 2019. [
DOI:10.1007/s11801-019-8140-3]
9. [9] M. Jangalwa, V. Tokekar, "Performance analysis of selective mapping and clipping based multicarrier-cdma system with and without mimo technique", AEU-International Journal of Electronics and Communications, vol. 101, pp. 62-68, 2019. [
DOI:10.1016/j.aeue.2019.01.028]
10. [10] Y. A. Jawhar, L. Audah, M. A. Taher, K. N. Ramli, N. S. M. Shah, M. Musa, M. S. Ahmed, "A review of partial transmit sequence for papr reduction in the ofdm systems", IEEE Access, vol. 7, pp. 18021-18041, 2019. [
DOI:10.1109/ACCESS.2019.2894527]
11. [11] J.-K. Lain, S.-Y. Wu, P.-H. Yang, "Papr reduction of ofdm signals using pts: a real-valued genetic approach", EURASIP Journal on Wireless Communications and Networking, vol. 1, no. 126, 2011. [
DOI:10.1186/1687-1499-2011-126]
12. [12] M. H. Aghdam, A. A. Sharifi, "Papr reduction in ofdm systems: An efficient pts approach based on particle swarm optimization", ICT Express, 2018.
13. [13] Y. Wang, W. Chen, C. Tellambura, "A papr reduction method based on artificial bee colony algorithm for ofdm signals", IEEE transactions on wireless communications, vol. 9, no. 10, pp. 2994-2999, 2010. [
DOI:10.1109/TWC.2010.081610.100047]
14. [14] N. Taspinar, A. Kalinli, and M. Yildirim, "Partial transmit sequences for PAPR reduction using parallel tabu search algorithm in OFDM systems", IEEE Communications Letters, vol. 15, no. 9, pp.974-976, 2011. [
DOI:10.1109/LCOMM.2011.072911.110999]
15. [15] M. Singh, S. K. Patra, "Partial transmit sequence optimization using improved harmony search algorithm for papr reduction in ofdm", ETRI Journal, vol. 39, no. 6, pp. 782-793, 2017. [
DOI:10.4218/etrij.17.0116.0919]
16. [16] J. Zhou, E. Dutkiewicz, R. P. Liu, X. Huang, G. Fang, Y. Liu, "A modified shuffled frog leaping algorithm for papr reduction in ofdm systems", IEEE Transactions on Broadcasting, vol. 61, no. 4, pp. 698-709, 2015. [
DOI:10.1109/TBC.2015.2459660]
17. [17] T. Zhang, S. Li, and X. Yu, "Global optimal firefly algorithm in peak-to-average power ratio reduction of orthogonal frequency division multiplexing systems", Sensor Letters, vol. 12, no. 2, pp. 281-286, 2014. [
DOI:10.1166/sl.2014.3279]
18. [18] R. S. Rao, P. Malathi, "A novel pts: grey wolf optimizer-based papr reduction technique in ofdm scheme for high-speed wireless applications", Soft Computing, vol. 23, no. 8, pp. 2701-2712, 2019. [
DOI:10.1007/s00500-018-3665-0]
19. [19] H. Emami and F. Derakhshan, "Election algorithm: a new socio-politically inspired strategy", AI Commun, vol. 28, no. 3, pp. 591-603, 2015. [
DOI:10.3233/AIC-140652]
20. [20] R. L. Haupt and S. E. Haupt, "Practical genetic algorithms", John Wiley & Sons, Inc., Publication, 1998.
21. [21] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", IEEE Congress on Evolutionary Computation, pp. 4661-4667, 2007. [
DOI:10.1109/CEC.2007.4425083]
22. [22] S. Talatahari, B. F. Azar, R. Sheikholeslami, and A. H. Gandomi, "Imperialist competitive algorithm combined with chaos for global optimization", Commun. Nonlinear Sci. Numer. Simul, vol. 17, no. 3, pp. 1312-1319, 2012. [
DOI:10.1016/j.cnsns.2011.08.021]
23. [23] M. Jamil and X. S. Yang,"A literature survey of benchmark functions for global optimisation problems",Int. J. Math. Model. Numer. Optim.vol. 4, no. 2, pp. 150-194, 2013. [
DOI:10.1504/IJMMNO.2013.055204]