Volume 18, Issue 4 (3-2022)                   JSDP 2022, 18(4): 81-88 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani M. A neural mass model of CA1-CA3 neural network and studying sharp wave ripples. JSDP 2022; 18 (4) : 6
URL: http://jsdp.rcisp.ac.ir/article-1-1041-en.html
Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
Abstract:   (1629 Views)
We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adaptation for excitatory neurons. The model consists of one group of identical CA1 excitatory neurons, one group of identical CA1 inhibitory neurons, one group of identical CA3 excitatory neurons, and one group of identical CA3 inhibitory neurons. All the recurrent connections between the neurons of CA3 network are considered. For CA1 neurons the excitatory to inhibitory, inhibitory to excitatory and inhibitory to inhibitory connections are considered. CA1 and CA3 neurons are connected by long-range connections from CA3 excitatory neurons to both CA1 excitatory and inhibitory neurons. We show that this simple model can spontaneously generate the oscillations similar to the sharp waves in the CA3 network. The duration of the sharp waves is determined by the slow dynamic of the adaptation process. The excitatory inputs from CA3 network to the CA1 network during these sharp waves induce ripples in the CA1 network due to the interaction of excitatory and inhibitory neurons. We next show that contrary to intuition and in a very good agreement with the recent experimental findings, reduction of the excitation increases the amplitude of the ripples while decreases the frequency of them. This model can also spontaneously generate ripple doublets. The decrease in the excitation is associated with the increase in the probability of observing ripple doublets. Our results shed light on our understanding of the mechanism underlying the generation of sharp wave ripples.
Article number: 6
Full-Text [PDF 734 kb]   (773 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2019/06/28 | Accepted: 2020/09/2 | Published: 2022/03/21 | ePublished: 2022/03/21

References
1. [1] P. Anderson, et al., "Modeling sharp wave ripple complexes through a CA3-CA1 network model with chemical synapses",Hippo-campus,2012 May, vol. 22(5), pp.995-1017, 2011. [DOI:10.1002/hipo.20930] [PMID]
2. [2] D. Sullivan , J. Csicsvari, K. Mizuseki, S. Montgomery, K. Diba, G. Buzsáki, "Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity.", J Neurosci, vol.31 (23), pp. 8605-16, 2011. [DOI:10.1523/JNEUROSCI.0294-11.2011] [PMID] [PMCID]
3. [3] G. Buzsa'ki," Hippocampal sharp waves: their origin and significance", Brain Res398, pp.242-252, 1986. [DOI:10.1016/0006-8993(86)91483-6]
4. [4] G. Buzsa'ki," Rhythms of the Brain", Oxford University Press, 2006.
5. [5] G. Buzsa'ki, Z. Horvath, R. Urioste, J. Hetke, K. Wise , " High-frequency network oscillation in the hippocampus",Scien-ce vol. 256, pp. 1025-1027,1992. [DOI:10.1126/science.1589772] [PMID]
6. [6] A. Draguhn, RD. Traub, D. Schmitz, JGR. Jefferys," Electrical couplingunderlies high-frequency oscillations in the hippocampus invitro," Nature vol. 394, pp.189-192, 1998. [DOI:10.1038/28184] [PMID]
7. [7] D. Schmitz, S. Schuchmann, A. Fisahn, A. Draguhn, EH. Buhl, E.Petrasch-Parwez, R. Dermietzel, U. Heinemann, RD. Traub,"Axo-axonalcoupling a novel mechanism for ultrafast neuronal communication," Neuron vol.31, pp. 31831-840, 2001. [DOI:10.1016/S0896-6273(01)00410-X]
8. [8] A. Ylinen, A. Bragin, Z. Nadasdy, G. Jando, I. Szabo, A. Sik, G. Buzsa'ki,"Sharp wave-associated high-frequency oscillation (200 Hz) inthe intact hippocampus: network and intracellular mechanisms.",J Neurosci, vol.15, pp. 30-46, 1995. [DOI:10.1523/JNEUROSCI.15-01-00030.1995] [PMID] [PMCID]
9. [9] N. Maier, V. Nimmrich, A. Draguhn," Cellular and network mechanisms underlying spon-taneous sharp waveripple complexes in mouse hippocampal slices," J Physiol, vol.550, pp. 873-887, 2003. [DOI:10.1113/jphysiol.2003.044602] [PMID] [PMCID]
10. [10] M. Both, F. Ba¨hner, OB. Halbach, A. Draguhn," Propagation of specific network patterns through the mouse hippocampus," Hippocampus, vol.18, pp. 899-908, 2008. [DOI:10.1002/hipo.20446] [PMID]
11. [11] J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, G. Buzsa'ki, " Oscillatory coupling of hippocampal pyramidal cells and interneurons inthe behaving ra, ",J Neurosci. Vol. 19, pp. 274-287, 1999. [DOI:10.1523/JNEUROSCI.19-01-00274.1999] [PMID] [PMCID]
12. [12] J. Taxidis, S. Coombes , R. Mason , MR. Owen, "Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses," Hippo-campus, vol. 22(5), pp. 995-1017, 2012. [DOI:10.1002/hipo.20930] [PMID]
13. [13] M. Ghorbani, M. Mehta, R. Bruinsma, and J. A. Levine, "Nonlinear-dynamics theory of up-down transitions in neocortical neural networks",Phys. Rev. E, vol. 85, pp. 21-98, 2012. [DOI:10.1103/PhysRevE.85.021908] [PMID]
14. [14] J. Gan, S. Weng, AJ. Pernía-Andrade, J. Csicsvari, P. Jonas, "Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo ,Neuron", vol. 93 (2), pp. 308-314, 2017. [DOI:10.1016/j.neuron.2016.12.018] [PMID] [PMCID]
15. [15] G. Buzsaki, "Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning, Hippocampus", vol. 25(10): pp.1073-1188, 2015. [DOI:10.1002/hipo.22488] [PMID] [PMCID]
16. [16] J. Sven, M. Timme, and R. Memmesheimer, "A unified dynamic model for learning, replay, and sharp-wave/ripples," Journal of Neuroscience, pp. 16236-16258, 2015. [DOI:10.1523/JNEUROSCI.3977-14.2015] [PMID] [PMCID]
17. [17] R. Memmesheimer, "Quantitative prediction of intermittent high-frequency oscillations in neural networks with supralinear dendritic interactions," Proceedings of the National Academy of Sciences , pp.11092-11097,2010. [DOI:10.1073/pnas.0909615107] [PMID] [PMCID]
18. [18] A. Amélie, et al. "A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations," Journal of computational neuroscience , pp. 207-221, 2018. [DOI:10.1007/s10827-018-0704-x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing