BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Azarnia G, Tinati M A, Yousefi Rezaii T. Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology. JSDP. 2021; 18 (3) :65-76

URL: http://jsdp.rcisp.ac.ir/article-1-1027-en.html

URL: http://jsdp.rcisp.ac.ir/article-1-1027-en.html

Type of Study: Research |
Subject:
Paper

Received: 2019/06/1 | Accepted: 2020/08/18 | Published: 2022/01/20 | ePublished: 2022/01/20

Received: 2019/06/1 | Accepted: 2020/08/18 | Published: 2022/01/20 | ePublished: 2022/01/20

1. [1] E.J. Candès, and M.B. Wakin, "An introduction to compressive sampling", IEEE signal processing magazine, vol. 25(2), pp.21-30, 2008. [DOI:10.1109/MSP.2007.914731]

2. [2] H. Shiri, M. A. Tinati, M. Codreanu, and G. Azarnia, "Distributed sparse diffusion estimation with reduced communication cost", IET Signal Processing, vol. 12(8), pp. 1043-1052, 2018. [DOI:10.1049/iet-spr.2017.0377]

3. [3] G. Azarnia, M.A. Tinati, and T.Y. Rezaii, "Cooperative and distributed algorithm for compressed sensing recovery in WSNs", IET Signal Processing, vol. 12(3), pp.346-357, 2017. [DOI:10.1049/iet-spr.2017.0093]

4. [4] B.K. Natarajan, "Sparse approximate solutions to linear systems", SIAM Journal on Computing, vol. 24(2), pp. 227-234, 1995. [DOI:10.1137/S0097539792240406]

5. [5] S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIREV, vol. 43(1), pp.129-159, 2001. [DOI:10.1137/S003614450037906X]

6. [6] E. J. Candès and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," The annals of Statistics, vol. 35(6), pp. 2313-2351, 2007. [DOI:10.1214/009053607000000532]

7. [7] R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. Ser. B, vol. 58(1), pp. 267-288, 1996. [DOI:10.1111/j.2517-6161.1996.tb02080.x]

8. [8] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, "Instrumenting the world with wireless sensor networks', In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 4, pp. 2033-2036, 2001.

9. [9] G. Azarnia, M. A. Tinati, and T. Y. Rezaii, "Generic cooperative and distributed algorithm for recovery of signals with the same sparsity profile in wireless sensor networks: a non-convex approach," The Journal of Supercomputing, vol. 75(5), pp. 2315-2340, 2019. [DOI:10.1007/s11227-018-2632-y]

10. [10] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A survey on sensor networks", IEEE Communications Magazine, Vol. 40(8), pp.102-114, 2002. [DOI:10.1109/MCOM.2002.1024422]

11. [11] C. Luo, F. Wu, J. Sun, and C. W. Chen, "Compressive data gathering for large-scale wireless sensor networks", In Proceedings of the 15th annual international conference on Mobile computing and networking, 2009, 145-156, [DOI:10.1145/1614320.1614337]

12. [12] C. Luo, F. Wu, J. Sun, and C. Chen, "Efficient measurement generation and pervasive sparsity for compressive data gathering", IEEE Trans Wireless Commun., vol. 9(12), pp. 3728-38, 2010. [DOI:10.1109/TWC.2010.092810.100063]

13. [13] Y. Zhu and X. Wang, "Multi-session data gathering with compressive sensing for large-scale wireless sensor networks," in Proc. Global Telecommunications conf, 2010, pp. 1-5. [DOI:10.1109/GLOCOM.2010.5683396]

14. [14] A. Abrardo, C. M. Carretti, and A. Mecocci, "A compressive sampling data gathering approach for wireless sensor networks using a sparse acquisition matrix with abnormal values", Communications Control and Signal Processing (ISCCSP), 2012 5th International Symposium on, 2012, pp. 1-4. [DOI:10.1109/ISCCSP.2012.6217784]

15. [15] J. Wang, S. Tang, B. Yin, X. and Li, "Data gathering in wireless sensor networks through intelligent compressive sensing", In 2012 Proceedings IEEE INFOCOM, pp. 603-611, 2012. [DOI:10.1109/INFCOM.2012.6195803]

16. [16] R. Xie and X. Jia, "Minimum transmission data gathering trees for compressive sensing in wireless sensor networks," in Proc. IEEE GlobeCom, pp. 1-5, 2011.

17. [17] X. Wu, Y. Xiong, W. Huang, H. Shen, and M. Li, "An efficient compressive data gathering routing scheme for large-scale wireless sensor networks," Comput. Electr, Eng, vol. 39(6), pp. 1935-1946, 2013. [DOI:10.1016/j.compeleceng.2013.04.009]

18. [18] H. Zheng, F. Yang, X. Tian, X. Gan, X. Wang, and S. Xiao, "Data gathering with compressive sensing in wireless sensor networks: A random walk based approach," IEEE Trans. Parallel Distrib. Syst., vol. 26(1), pp. 35-44, 2015. [DOI:10.1109/TPDS.2014.2308212]

19. [19] D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk, "Distributed compressed sensing", Dept. Elect. Eng., Rice University, Houston, TX, Tech. Rep. TREE-0612, 2006.

20. [20] J. Park, S. Hwang, J. Yang, and D. Kim, "Generalized distributed compressive sensing" appeared in Rice University Compressive Sensing Resources, http://www.dsp.rice.ed-u/cs.

21. [21] H. Xu, N. Fu, L. Qiao, and X. Peng, "Fast pursuit method for greedy algorithms in distributed compressive sensing," in Conf. Rec., IEEE Instrumentation and Measurement Technology Conf., pp. 1118-1122, 2015. [DOI:10.1109/I2MTC.2015.7151428] [PMCID]

22. [22] W. Chen, I. Wassell, and M. Rodrigues, "Dictionary design for distributed compressive sensing," IEEE Signal Processing Letters, vol. 22(1), pp. 95-99, 2015. [DOI:10.1109/LSP.2014.2350024]

23. [23] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, "Decentralized compression and predistribution via random gossiping", in Proc. of IPSN, pp. 51-59, 2006. [DOI:10.1145/1127777.1127789]

24. [24] W. Wang, M. Garofalakis, and K. Ramchandran, "Distributed sparse random projections for refinable approximation," in Proc. of IPSN, pp. 331-339, 2007. [DOI:10.1145/1236360.1236403]

25. [25] A. Talari and N. Rahnavard, "Cstorage: Distributed data storage in wireless sensor networks employing compressive sensing", in Proc. IEEE Global Telecommunications Conf., 2012, pp. 1-5. [DOI:10.1109/GLOCOM.2011.6134318]

26. [26] M. Lin, C. Luo, F. Liu, and F. Wu. "Compressive data persistence in large-scale wireless sensor networks", In Global Telecommunications Conference, 2010, pp. 1-5. [DOI:10.1109/GLOCOM.2010.5684035]

27. [27] F. Liu, M. Lin, Y. Hu, C. Luo, and F. Wu, "Design and analysis of compressive data persistence in large-scale wireless sensor networks," IEEE Trans. Parallel Distrib. Syst., vol. 26(10), pp. 2685-2698, 2015. [DOI:10.1109/TPDS.2014.2360855]

28. [28] G. Azarnia and M. A. Tinati, "Steady-state analysis of the deficient length incremental LMS adaptive networks," Circuits, Syst. Signal Process., vol. 34(9), pp. 2893-2910, 2015. [DOI:10.1007/s00034-015-9978-7]

29. [29] G. Azarnia and M. A. Tinati, "Steady-state analysis of the deficient length incremental LMS adaptive networks with noisy links," AEU Int. J. Electron. Commun., vol. 69(1), pp. 153-162, 2015. [DOI:10.1016/j.aeue.2014.08.007]

30. [30] Z. Zhao, J. Feng and B. Peng "A green distributed signal reconstruction algorithm in wireless sensor networks", IEEE Access, pp. 5908-5917, 2016. [DOI:10.1109/ACCESS.2016.2572303]

31. [31] D. Sundman , S. Chatterjee , and M. Skoglund, "Design and analysis of a greedy pursuit for distributed compressed sensing", IEEE Trans. Sig. Process. Vol. 64 (11), pp. 2803-2818, 2016. [DOI:10.1109/TSP.2016.2523462]

32. [32] W. Chen , and I.J. Wassell , "A decentralized bayesian algorithm for distributed compressive sensing in networked sensing systems", IEEE Trans. Wireless Commu, Vol. 15 (2), pp. 1282-1292, 2016. [DOI:10.1109/TWC.2015.2487989]

33. [33] G. Mateos, J. A. Bazerque, and G. B. Giannakis, "Distributed sparse linear regression," IEEE Transactions on Signal Processing, vol. 58(10), pp. 5262-5276, 2010. [DOI:10.1109/TSP.2010.2055862]

34. [34] S. Foucart, H. Rauhut, "A Mathematical Introduction to Compressive Sensing", Springer, New York, August 2013. [DOI:10.1007/978-0-8176-4948-7]

Send email to the article author

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |