دوره 15، شماره 2 - ( 6-1397 )                   جلد 15 شماره 2 صفحات 88-69 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Dashti M, Harouni M. Smile and Laugh Expressions Detection Based on Local Minimum Key Points. JSDP 2018; 15 (2) :69-88
URL: http://jsdp.rcisp.ac.ir/article-1-658-fa.html
محمدی دشتی مینا، هارونی مجید. آشکارسازی حالات لبخند و خنده چهره افراد بر پایه نقاط کلیدی محلی کمینه. پردازش علائم و داده‌ها. 1397; 15 (2) :69-88

URL: http://jsdp.rcisp.ac.ir/article-1-658-fa.html


دانشگاه آزاد اسلامی واحد دولت آباد، دانشکده مهندسی کامپیوتر
چکیده:   (5089 مشاهده)

در این مقاله، آشکارسازی حالات لبخند و خنده چهره با رویکرد توصیف و کاهش بُعد نقاط کلیدی ارائه شده‌است. اساس کار در این پژوهش بر مبنای دو هدف استخراج نقاط محلی کلیدی و ویژگی ظاهری آنها، و همچنین کاهش وابستگی سامانه به آموزش نهاده شده‌است. برای تحقق این اهداف سه سناریوی مختلف استخراج ویژگی‌ ارائه شده است. ابتدا اجزای یک صورت توسط الگوریتم الگوی دودویی محلی آشکار می‌شود؛ سپس در سناریوی نخست، با توجه به تغییرات همبستگی پیکسل‌های مجاور بافت محدوده لب، مجموعه نقاط کلیدی محلی بر پایه گوشه‌یاب هریس استخراج می‌شود. در سناریوی دوم، کاهش بعد نقاط مستخرج سناریوی نخست با بهبود الگوریتم تحلیل مؤلفه‌های اصلی انجام می‌شود؛ و در سناریوی آخر با مقایسه مختصات نقاط مستخرج از سناریوی نخست و توصیف‌گر بریسک مجموعه نقاط بحرانی استخراج می‌شود. در ادامه بدون آموزش سامانه، با مقایسه شکل و فاصله هندسی نقاط محلی محدوده لب حالات چهره آشکار می‌شود. برای ارزیابی روش پیشنهادی، از پایگاه داده‌های استاندارد و شناخته‌شده Cohn-Kaonde،CAFE، JAFFE و Yale  استفاده شده‌است. نتایج به‌دست‌آمده از سناریوهای مختلف به‌ترتیب بیان‌گر بهبود 33/6 و 46/16 درصدی متوسط نرخ دقت بازشناسی سناریوی دوم نسبت به نخست و سناریوی سوم نسبت به دوم است. همچنین نتایج کلی آزمایش‌ها، کارایی قابل قبول بالای 90 درصد روش پیشنهادی را نشان می‌دهد.
 

متن کامل [PDF 5940 kb]   (2394 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1396/5/11 | پذیرش: 1397/2/26 | انتشار: 1397/6/25 | انتشار الکترونیک: 1397/6/25

فهرست منابع
1. [1] J. L. Lakin, "Automatic cognitive processes and nonverbal communication," The Sage handbook of nonverbal communication, pp. 59-77, 2006. [PMCID]
2. [2] M. Harouni, D. Mohamad, and A. Rasouli, "Deductive method for recognition of on-line handwritten Persian/Arabic characters," in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, 2010, vol. 5, pp. 791-795: IEEE.
3. [3] L. Sánchez López, "Local Binary Patterns applied to Face Detection and Recognition," 2010.
4. [4] نادری شقایق، مقدم چرکری نصرالله، کبیر احسان‌اله. بهبود محلی کیفیت تصاویر چهره با سایه شدید به منظور ارتقای شناسایی، پردازش علائم و داده‌ها. ۱۳۹۰، دوره ۸ (۱) :۵۵-۶۶.
5. [4] N. M. C. Shaghayegh Naderi, Esanollah Kabir, "Region-based Quality Improvement of Facial Images with Strong Shadows to Enhance Recognition," (in eng), Signal and Data Processing, Research vol. 8, no. 1, pp. 55-66, 2011.
6. [5] M. Harouni, M. Rahim, M. Al-Rodhaan, T. Saba, A. Rehman, and A. Al-Dhelaan, "Online Persian/Arabic script classification without contextual information," The Imaging Science Journal, vol. 62, no. 8, pp. 437-448, 2014. [DOI:10.1179/1743131X14Y.0000000083]
7. [6] D. A. Lisin, M. A. Mattar, M. B. Blaschko, E. G. Learned-Miller, and M. C. Benfield, "Combining local and global image features for object class recognition," in Computer vision and pattern recognition-workshops, 2005. CVPR workshops. IEEE Computer society conference on, 2005, pp. 47-47: IEEE.
8. [7] سیدصالحی سیده زهره، سیدصالحی سیدعلی. بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد. پردازش علائم و داده‌ها. ۱۳۹۴; ۱۲ (۱) :۳-۱۶.
9. [7] S. Z. Seyyedsalehi and S. A. Seyyedsalehi, "Improving the nonlinear manifold separator model to the face recognition by a single image of per person," (in eng), Signal and Data Processing, Research vol. 12, no. 1, pp. 3-16, 2015.
10. [8] M. Harouni, D. Mohamad, M. S. M. Rahim, S. M. Halawani, and M. Afzali, "Handwritten Arabic character recognition based on minimal geometric features," International Journal of Machine Learning and Computing, vol. 2, no. 5, p. 578, 2012. [DOI:10.7763/IJMLC.2012.V2.193]
11. [9] A. J. Calder, A. M. Burton, P. Miller, A. W. Young, and S. Akamatsu, "A principal component analysis of facial expressions," Vision research, vol. 41, no. 9, pp. 1179-1208, 2001. [DOI:10.1016/S0042-6989(01)00002-5]
12. [10] S. Jairath, S. Bharadwaj, M. Vatsa, and R. Singh, "Adaptive skin color model to improve video face detection," in Machine Intelligence and Signal Processing: Springer, 2016, pp. 131-142. [DOI:10.1007/978-81-322-2625-3_12]
13. [11] D. Reska, C. Boldak, and M. Kretowski, "A texture-based energy for active contour image segmentation," in Image Processing & Communications Challenges 6: Springer, 2015, pp. 187-194.
14. [12] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of cognitive neuroscience, vol. 3, no. 1, pp. 71-86, 1991. [DOI:10.1162/jocn.1991.3.1.71] [PMID]
15. [13] S. Toyota, I. Fujiwara, M. Hirose, N. Ojima, K. Ogawa-Ochiai, and N. Tsumura, "Principal component analysis for the whole facial image with pigmentation separation and application to the prediction of facial images at various ages," Journal of Imaging Science and Technology, vol. 58, no. 2, pp. 20503-1-20503-11, 2014.
16. [14] M. H. Siddiqi, R. Ali, A. M. Khan, Y.-T. Park, and S. Lee, "Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields," IEEE Transactions on Image Processing, vol. 24, no. 4, pp. 1386-1398, 2015. [DOI:10.1109/TIP.2015.2405346] [PMID]
17. [15] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Face recognition using kernel direct discriminant analysis algorithms," IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 117-126, 2003. [DOI:10.1109/TNN.2002.806629] [PMID]
18. [16] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, "Face recognition by independent component analysis," IEEE transactions on neural networks/a publication of the IEEE Neural Networks Council, vol. 13, no. 6, p. 1450, 2002.
19. [17] R. Okamoto, S. Bando, and A. Nozawa, "Blind signal processing of facial thermal images based on independent component analysis," IEEJ Transactions on Electronics, Information and Systems, vol. 136, no. 8, pp. 1142-1148, 2016. [DOI:10.1541/ieejeiss.136.1142]
20. [18] E. Rosten and T. Drummond, "Machine learning for high-speed corner detection," in European conference on computer vision, 2006, pp. 430-443: Springer.
21. [19] H. Yoo, U. Yang, and K. Sohn, "Gradient-enhancing conversion for illumination-robust lane detection," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1083-1094, 2013. [DOI:10.1109/TITS.2013.2252427]
22. [20] B.-W. Chen, S. Rho, M. Guizani, and W.-K. Fan, "Cognitive sensors based on ridge phase-smoothing localization and multiregional histograms of oriented gradients," IEEE Transactions on Emerging Topics in Computing, 2016. [DOI:10.1109/TETC.2016.2585040]
23. [21] B. Bell and L.-F. Pau, "Contour tracking and corner detection in a logic programming environment," IEEE Transactions on pattern analysis and machine intelligence, vol. 12, no. 9, pp. 913-917, 1990. [DOI:10.1109/34.57685]
24. [22] S. Agarwal and D. P. Mukherjee, "Facial expression recognition through adaptive learning of local motion descriptor," Multimedia Tools and Applications, vol. 76, no. 1, pp. 1073-1099, 2017. [DOI:10.1007/s11042-015-3103-6]
25. [23] M. Harouni, D. Mohamad, M. S. M. Rahim, and S. M. Halawani, "Finding Critical Points of Handwritten Persian/Arabic Character," International Journal of Machine Learning and Computing, vol. 2, no. 5, p. 573, 2012. [DOI:10.7763/IJMLC.2012.V2.192]
26. [24] G. Gao, K. Jia, and B. Jiang, "An Automatic Geometric Features Extracting Approach for Facial Expression Recognition Based on Corner Detection," in Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2015 International Conference on, 2015, pp. 302-305: IEEE.
27. [25] Z. H. Shah and V. Kaushik, "Performance analysis of canny edge detection for illumination invariant facial expression recognition," in Industrial Instrumentation and Control (ICIC), 2015 International Conference on, 2015, pp. 584-589: IEEE.
28. [26] H. Candra, M. Yuwono, R. Chai, H. T. Nguyen, and S. Su, "Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient," in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, 2016, pp. 423-426: IEEE. [PMID]
29. [27] R. Agada and J. Yan, "Edge based mean LBP for valence facial expression detection," in Electrical, Computer and Communication Technologies (ICECCT), 2015 IEEE International Conference on, 2015, pp. 1-7: IEEE.
30. [28] احمدخانی سمیه، ادیبی پیمان. مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره. پردازش علائم و داده‌ها. ۱۳۹۴، ۱۲ (۴) :۵۳-۶۵.
31. [28] S. Ahmadkhani and P. Adibi, "Supervised Probabilistic Principal Component Analysis Mixture Model in a Lossless Dimensionality Reduction Framework for Face Recognition," Signal and Data Processing, vol. 12, no. 4, pp. 53-65, 2016.
32. [29] T. Kanade, Y. Tian, and J. F. Cohn, "Comprehensive database for facial expression analysis," in fg, 2000, p. 46: IEEE.
33. [30] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, "Coding facial expressions with gabor wavelets," in Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on, 1998, pp. 200-205: IEEE.
34. [31] M. Dailey, G. Cottrell, and J. Reilly, "California facial expressions (cafe)," Unpublished digital images, University of California, San Diego, Computer Science and Engineering Department, 2001.
35. [32] A. Georghiades, P. Belhumeur, and D. Kriegman, "Yale face database," Center for computational Vision and Control at Yale University, http://cvc. yale. edu/projects/yalefaces/yalefa, vol. 2, p. 6, 1997.
36. [33] V. Tipsuwanpom, V. Krongratana, S. Gulpanich, and K. Thongnopakun, "Fire detection using neural network," in SICE-ICASE, 2006. International Joint Conference, 2006, pp. 5474-5477: IEEE.
37. [34] P. Ji, Y. Kim, Y. Yang, and Y.-S. Kim, "Face occlusion detection using skin color ratio and LBP features for intelligent video surveillance systems," in Computer Science and Information Systems (FedCSIS), 2016 Federated Conference on, 2016, pp. 253-259: IEEE. [PMID]
38. [35] O. H. Jensen, "Implementing the Viola-Jones face detection algorithm," Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2008.
39. [36] C. Harris and M. Stephens, "A combined corner and edge detector," in Alvey vision conference, 1988, vol. 15, no. 50, pp. 10-5244: Citeseer.
40. [37] X. Shunqing, Z. Weihong, and X. Wei, "Optimization of Harris corner detection algorithm," in Advances in Control and Communication: Springer, 2012, pp. 59-64.
41. [38] M. N. Patil, B. Iyer, and R. Arya, "Performance Evaluation of PCA and ICA Algorithm for Facial Expression Recognition Application," in Proceedings of Fifth International Conference on Soft Computing for Problem Solving, 2016, pp. 965-976: Springer.
42. [39] J. H. Shah, M. Sharif, M. Raza, and A. Azeem, "A Survey: Linear and Nonlinear PCA Based Face Recognition Techniques," Int. Arab J. Inf. Technol., vol. 10, no. 6, pp. 536-545, 2013.
43. [40] S. Leutenegger, M. Chli, and R. Y. Siegwart, "BRISK: Binary robust invariant scalable keypoints," in Computer Vision (ICCV), 2011 IEEE International Conference on, 2011, pp. 2548-2555: IEEE.
44. [41] M. H. Siddiqi et al., "Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection," Multimedia Tools and Applications, vol. 75, no. 2, pp. 935-959, 2016. [DOI:10.1007/s11042-014-2333-3]
45. [42] Y. Cao, W. Zheng, L. Zhao, and C. Zhou, "Expression recognition using elastic graph matching," in International Conference on Affective Computing and Intelligent Interaction, 2005, pp. 8-15: Springer. [DOI:10.1007/11573548_2]
46. [43] M. J. Lyons, J. Budynek, and S. Akamatsu, "Automatic classification of single facial images," IEEE transactions on pattern analysis and machine intelligence, vol. 21, no. 12, pp. 1357-1362, 1999. [DOI:10.1109/34.817413]
47. [44] W. Gu, C. Xiang, Y. Venkatesh, D. Huang, and H. Lin, "Facial expression recognition using radial encoding of local Gabor features and classifier synthesis," Pattern recognition, vol. 45, no. 1, pp. 80-91, 2012. [DOI:10.1016/j.patcog.2011.05.006]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این تارنما متعلق به فصل‌نامة علمی - پژوهشی پردازش علائم و داده‌ها است.