دوره 20، شماره 1 - ( 3-1402 )                   جلد 20 شماره 1 صفحات 170-159 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه مازندران
چکیده:   (912 مشاهده)
شبکه‌های‌ حسگر بی‌سیم به دلیل کاربردهای متنوعی که دارند همواره مورد توجه قرارگرفته‌اند. در تقسیم‌بندی شبکه‌های حسگر بی‌سیم، شبکه‌های حسگر بی‌سیم بدن به دلیل کاربردهای حساس پزشکی از اهمیت ویژه‌ای برخوردارند. هرگونه حمله به شبکه‌های حسگر بی‌سیم بدن می‌تواند خسارت‌های جانی جبران‌ناپذیری برای بیمار به همراه داشته باشد. یکی از روش‌های تأمین امنیت استفاده از سیستم‌های تشخیص نفوذ به‌عنوان یک دفاع خط دوم می‌باشد. در این مقاله یک سیستم تشخیص نفوذ مبتنی بر ناهنجاری با استفاده از روش‌های ترکیبی ارائه‌شده است. در سیستم تشخیص نفوذ پیشنهادی ابتدا با استفاده از الگوریتم ژنتیک ویژگی‌هایی از داده‌های جمع‌آوری‌شده انتخاب می‌شوند که موجب به دست آمدن بالاترین نرخ تشخیص شوند. سپس با استفاده از روش‌های ماشین بردار پشتیبان و k نزدیک‌ترین همسایه طبقه‌بندی داده‌ها به‌منظور کشف ترافیک ناهنجار از ترافیک داده‌های نرمال انجام می‌شود. نتایج شبیه‌سازی برای حمله جلوگیری از سرویس نشان می‌دهد که استفاده از سیستم پیشنهادی با استفاده از روش طبقه‌بندی k نزدیک‌ترین همسایه می‌تواند بازده ای معادل 90% داشته باشد.
شماره‌ی مقاله: 10
متن کامل [PDF 1028 kb]   (344 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه علائم حیاتی ( مرتبط با مهندسی پزشکی)
دریافت: 1398/10/16 | پذیرش: 1401/12/3 | انتشار: 1402/5/22 | انتشار الکترونیک: 1402/5/22

فهرست منابع
1. [1] M. Ghamari, B. Janko, R. Sherratt, W. Harwin, R. Piechockic, and C. Soltanpur, "A survey on wireless body area networks for ehealthcare systems in residential environments," Sensors, vol. 16, no. 6, p. 831, 2016. [DOI:10.3390/s16060831] [PMID] []
2. [2] M. Contaldo, B. Banerjee, D. Ruffieux, J. Chabloz, E. Le Roux, and C. C. Enz, "A 2.4-GHz BAW-based transceiver for wireless body area networks," IEEE transactions on biomedical circuits and systems, vol. 4, no. 6, pp. 391-399, 2010. [DOI:10.1109/TBCAS.2010.2081363] [PMID]
3. [3] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour, "Wireless body area networks: A survey," IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1658-1686, 2014. [DOI:10.1109/SURV.2013.121313.00064]
4. [4] S. Ullah et al., "A comprehensive survey of wireless body area networks," Journal of medical systems, vol. 36, no. 3, pp. 1065-1094, 2012. [DOI:10.1007/s10916-010-9571-3] [PMID]
5. [5] S. Al-Janabi, I. Al-Shourbaji, M. Shojafar, and S. Shamshirband, "Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications," Egyptian Informatics Journal, vol. 18, no. 2, pp. 113-122, 2017. [DOI:10.1016/j.eij.2016.11.001]
6. [6] محمودی نصر پیام، یزدیان ورجانی علی. "یک سامانه مدیریت دسترسی برای کاهش تهدیدهای عملیاتی در سامانه اسکادا" پردازش علائم و داده‌ها. ۱۳۹۶; ۱۴ (۴) :۳-۱۸
7. [6] Mahmoudi-Nasr P, Yazdian Varjani A. "An Access Management System to Mitigate Operational Threats in SCADA System", JSDP 2018; 14 (4) :3-18. [DOI:10.29252/jsdp.14.4.3]
8. [7] M. S. Taha, M. S. M. Rahim, M. M. Hashim, and F. A. Johi, "Wireless body area network revisited," International Journal of Engineering & Technology, vol. 7, no. 4, pp. 3494-3504, 2018.
9. [8] P. Dodangeh and A. H. Jahangir, "A biometric security scheme for wireless body area networks," Journal of Information Security and Applications, vol. 41, pp. 62-74, 2018. [DOI:10.1016/j.jisa.2018.06.001]
10. [9] R. Cavallari, F. Martelli, R. Rosini, C. Buratti, and R. Verdone, "A survey on wireless body area networks: Technologies and design challenges," IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1635-1657, 2014. [DOI:10.1109/SURV.2014.012214.00007]
11. [10] M. Usman, M. R. Asghar, I. S. Ansari, and M. Qaraqe, "Security in Wireless Body Area Networks: From In-Body to Off-Body Communications," IEEE Access, vol. 6, pp. 58064-58074, 2018. [DOI:10.1109/ACCESS.2018.2873825]
12. [11] O. Salem, A. Serhrouchni, A. Mehaoua, and R. Boutaba, "Event Detection in Wireless Body Area Networks using Kalman Filter and Power Divergence," IEEE Transactions on Network and Service Management, 2018. [DOI:10.1109/TNSM.2018.2842195]
13. [12] N. A. Alrajeh, S. Khan, and B. Shams, "Intrusion detection systems in wireless sensor networks: a review," International Journal of Distributed Sensor Networks, vol. 9, no. 5, p. 167575, 2013. [DOI:10.1155/2013/167575]
14. [13] R. Latif, H. Abbas, S. Latif, and A. Masood, "EVFDT: an enhanced very fast decision tree algorithm for detecting distributed denial of service attack in cloud-assisted wireless body area network," Mobile Information Systems, vol. 2015, 2015. [DOI:10.1155/2015/260594]
15. [14] N. K. Jha, A. Raghunathan, and M. Zhang, "Securing medical devices through wireless monitoring and anomaly detection," ed: Google Patents, 2018.
16. [15] G. Thamilarasu and Z. Ma, "Autonomous mobile agent based intrusion detection framework in wireless body area networks," in World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on a, 2015: IEEE, pp. 1-3. [DOI:10.1109/WoWMoM.2015.7158178]
17. [16] Y. Qu, G. Zheng, H. Wu, B. Ji, and H. Ma, "An energy-efficient routing protocol for reliable data transmission in wireless body area networks," Sensors, vol. 19, no. 19, p. 4238, 2019. [DOI:10.3390/s19194238] [PMID] []
18. [17] S. R. Nabavi, N. Osati Eraghi, and J. Akbari Torkestani, "Temperature-Aware Routing in Wireless Body Area Network Based on Meta-Heuristic Clustering Method," Journal of Communication Engineering, 2021.
19. [18] N. Bilandi, H. K. Verma, and R. Dhir, "PSOBAN: a novel particle swarm optimization based protocol for wireless body area networks," SN Applied Sciences, vol. 1, no. 11, pp. 1-14, 2019. [DOI:10.1007/s42452-019-1514-0]
20. [19] B. Vahedian and P. Mahmoudi-Nasr12, "Toward Energy-efficient Communication Protocol in Wireless Body Area Network: A Dynamic Scheduling Policy Approach."
21. [20] M. S. Hajar, M. O. Al-Kadri, and H. K. Kalutarage, "A survey on wireless body area networks: architecture, security challenges and research opportunities," Computers & Security, p. 102211, 2021. [DOI:10.1016/j.cose.2021.102211]
22. [21] ربیع پورمحمدجواد، قسوری حسین. خنشان امیرحسین, "بررسی تحلیلی شبکه‌های حسگر بی‌سیم بدنی و مقایسه تکنولوژی‌های گوناگون جهت ارتباطات در شبکه,"سومین کنفرانس ملی مهندسی برق و کامپیوتر سامانههای توزیع شده و شبکه های هوشمند, تهران, 1395.
23. [21] M. rabiepour, H. ghasvari and A. khanshan, " Analytical investigation of the capabilities and limitations of using various routing algorithms for use in wireless body area networks ", 3th National Conference on Electrical and Computer Engineering Distributed Systems and Smart Grids, 2016.
24. [22] S. Karchowdhury and M. Sen, "Survey on attacks on wireless body area network," International Journal of Computational Intelligence & IoT, Forthcoming, 2019.
25. [23] S. M. Othman, N. T. Alsohybe, F. M. Ba-Alwi, and A. T. Zahary, "Survey on intrusion detection system types," International Journal of Cyber-Security and Digital Forensics, vol. 7, no. 4, pp. 444-463, 2018.
26. [24] M. Dhuha I., and Sarab M. Hameed. "A feature selection model based on genetic algorithm for intrusion detection." Iraqi Journal of Science, pp. 168-175, 2016.
27. [25] Bamakan, Seyed Mojtaba Hosseini, et al. "An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization." Neurocomputing, Vol. 199,pp. 90-102, 2016. [DOI:10.1016/j.neucom.2016.03.031]
28. [26] P. Hamed Haddad, GholamHossein Dastghaibyfard, and Sattar Hashemi. "Two-tier network anomaly detection model: a machine learning approach." Journal of Intelligent Information Systems, Vol. 48, no.1, pp. 61-74, 2017. [DOI:10.1007/s10844-015-0388-x]
29. [27] Odesile, Adedayo, and Geethapriya Thamilarasu. "Distributed intrusion detection using mobile agents in wireless body area networks." 2017 Seventh International Conference on Emerging Security Technologies (EST). IEEE, 2017. [DOI:10.1109/EST.2017.8090414]
30. [28] Shone, Nathan, et al. "A deep learning approach to network intrusion detection." IEEE transactions on emerging topics in computational intelligence, Vol. 2, no.1, pp. 41-50. 2018. [DOI:10.1109/TETCI.2017.2772792]
31. [29] Woo, Ju-ho, Joo-Yeop Song, and Young-June Choi. "Performance enhancement of deep neural network using feature selection and preprocessing for intrusion detection." 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019. [DOI:10.1109/ICAIIC.2019.8668995]
32. [30] Newaz, AKM Iqtidar, et al. "Heka: A novel intrusion detection system for attacks to personal medical devices." 2020 IEEE Conference on Communications and Network Security (CNS). IEEE, 2020. [DOI:10.1109/CNS48642.2020.9162311]
33. [31] Hady, Anar A., et al. "Intrusion detection system for healthcare systems using medical and network data: A comparison study." IEEE Access, Vol. 8, pp. 106576-106584, 2020. [DOI:10.1109/ACCESS.2020.3000421]
34. [32] Iwendi, Celestine, et al. "Security of things intrusion detection system for smart healthcare." Electronics Vol. 10, no.12, pp. 1375, 2021. [DOI:10.3390/electronics10121375]
35. [33] Gupta, Karan, et al. "A tree classifier based network intrusion detection model for Internet of Medical Things." Computers and Electrical Engineering, Vol. 102,pp. 108158, 2022. [DOI:10.1016/j.compeleceng.2022.108158]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.