1. [1] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer vision using local binary patterns vol. 40: Springer Science & Business Media, 2011. [
DOI:10.1007/978-0-85729-748-8]
2. [2] Y. Dong, J. Feng, L. Liang, L. Zheng, and Q. Wu, "Multiscale sampling based texture image classification," IEEE Signal Processing Letters, vol. 24, pp. 614-618, 2017. [
DOI:10.1109/LSP.2017.2670026]
3. [3] V.-L. Nguyen, N.-S. Vu, and P.-H. Gosselin, "A scattering transform combination with local binary pattern for texture classification," in International Workshop on Content-based Multimedia Indexing, 2016. [
DOI:10.1109/CBMI.2016.7500238]
4. [4] F. Bianconi and A. Fernández, "Evaluation of the effects of Gabor filter parameters on texture classification," Pattern Recognition, vol. 40, pp. 3325-3335, 2007. [
DOI:10.1016/j.patcog.2007.04.023]
5. [5] J. Oh, S.-I. Choi, C. Kim, J. Cho, and C.-H. Choi, "Selective generation of Gabor features for fast face recognition on mobile devices," Pattern Recognition Letters, vol. 34, pp. 1540-1547, 2013. [
DOI:10.1016/j.patrec.2013.06.009]
6. [6] P. Cavalin, L. Oliveira, A. Koerich, and A. Britto, "Wood defect detection using grayscale images and an optimized feature set," in IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, 2006, pp. 3408-3412. [
DOI:10.1109/IECON.2006.347618]
7. [7] P. R. Cavalin, M. N. Kapp, J. Martins, and L. E. Oliveira, "A multiple feature vector framework for forest species recognition," in Proceedings of the 28th Annual ACM Symposium on Applied Computing, 2013, pp. 16-20. [
DOI:10.1145/2480362.2480368]
8. [8] R. M. Haralick and K. Shanmugam, "Textural features for image classification," IEEE Transactions on systems, man, and cybernetics, pp. 610-621, 1973. [
DOI:10.1109/TSMC.1973.4309314]
9. [9] Z. Guo, L. Zhang, and D. Zhang, "A completed modeling of local binary pattern operator for texture classification," IEEE Transactions on Image Processing, vol. 19, pp. 1657-1663, 2010. [
DOI:10.1109/TIP.2010.2044957] [
PMID]
10. [10] L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen, "Median robust extended local binary pattern for texture classification," IEEE Transactions on Image Processing, vol. 25, pp. 1368-1381, 2016. [
DOI:10.1109/TIP.2016.2522378] [
PMID]
11. [11] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, "Extended local binary patterns for texture classification," Image and Vision Computing, vol. 30, pp. 86-99, 2012. [
DOI:10.1016/j.imavis.2012.01.001]
12. [12] T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern recognition, vol. 29, pp. 51-59, 1996. [
DOI:10.1016/0031-3203(95)00067-4]
13. [13] X. Tan and B. Triggs, "Enhanced local texture feature sets for face recognition under difficult lighting conditions," IEEE transactions on image processing, vol. 19, pp. 1635-1650, 2010. [
DOI:10.1109/TIP.2010.2042645] [
PMID]
14. [14] T. Song, H. Li, F. Meng, Q. Wu, B. Luo, B. Zeng, et al., "Noise-robust texture description using local contrast patterns via global measures," IEEE Signal Processing Letters, vol. 21, pp. 93-96, 2014. [
DOI:10.1109/LSP.2013.2293335]
15. [15] T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Transactions on pattern analysis and machine intelligence, vol. 24, pp. 971-987, 2002. [
DOI:10.1109/TPAMI.2002.1017623]
16. [16] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen, and S. Huovinen, "Outex-new framework for empirical evaluation of texture analysis algorithms," in Pattern Recognition, 2002. Proceedings. 16th International Conference on, 2002, pp. 701-706.
17. [17] J. He, H. Ji, and X. Yang, "Rotation invariant texture descriptor using local shearlet-based energy histograms," IEEE Signal Processing Letters, vol. 20, pp. 905-908, 2013. [
DOI:10.1109/LSP.2013.2267730]
18. [18] I. El khadiri, A. Chahi, Y. El-Merabet, Y. Ruichek and R. Touahni, "Image classification with Local Directional Decoded Ternary Pattern," 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, pp. 812-817, [
DOI:10.1109/CoDIT.2019.8820373]
19. [19] S. R. Barburiceanu, S. Meza, C. Germain and R. Terebes, "An Improved Feature Extraction Method for Texture Classification with Increased Noise Robustness," 2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1-5 [
DOI:10.23919/EUSIPCO.2019.8902765]