1. [1] P. Huang, C. Chen, Z. Tang, and Z. Yang, "Discriminant similarity and variance preserving projec-tion for feature extraction", Neurocomput-ing, vol. 139, pp. 180-188, 2014. [
DOI:10.1016/j.neucom.2014.02.047]
2. [2] S. Tan, X. Sun, W. Chan, L. Qu , and L. Shao, "Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representa-tion", IEEE Transactions on Image Processing, vol. 26, no. 10, pp. 4661-4668, Oct. 2017. [
DOI:10.1109/TIP.2017.2716180] [
PMID]
3. [3] Y. Shen, M. Yang, B. Wei, C. T. Chou and W. Hu, "Learn to Recognise: Exploring Priors of Sparse Face Recognition on Smartphones", IEEE Trans-actions on Mobile Computing, vol. 16, no. 6, pp. 1705-1717, June 2017. [
DOI:10.1109/TMC.2016.2593919]
4. [4] C. Guzel Turhan and H. S. Bilge, "Class-wise two-dimensional PCA method for face recognition", IET Computer Vision, vol. 11, no. 4, pp. 286-300, 2017. [
DOI:10.1049/iet-cvi.2016.0135]
5. [5] W. Wang, R. Wang, Z. Huang, S. Shan and X. Chen, "Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets", IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 151-163, Jan. 2018.
6. [6] Yang, W.-H., Dai, D.-Q., "Two-Dimensional Maximum Margin Feature Extraction for Face Recognition", IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 39, no. 4, pp. 1002-1012, 2009. [
DOI:10.1109/TSMCB.2008.2010715] [
PMID]
7. [7] S. Ahmadkhani, P. Adibi, "Supervised Probabilistic Principal Component Analysis Mixture Model in a Lossless Dimensionality Reduction Framework for Face Recognition", Quarterly Journal of Signal and Data Processing, vol. 12, no. 4, pp. 53-65, 2016.
8. [8] Yang, M., Zhang, L., Shiu, S. C.-K., and Zhang, D., "Monogenic Binary Coding: An Efficient Local Feature Extraction Approach to Face Recogni-tion", IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1738-1751, 2012. [
DOI:10.1109/TIFS.2012.2217332]
9. [9] G. F. Hughes,"On the mean accuracy of statistical pattern recognition," IEEE Transactions on Information Theory, vol. IT-14, no. 1, pp. 55-63, 1968. [
DOI:10.1109/TIT.1968.1054102]
10. [10] K. Fukunaga, Introduction to Statistical Pattern Recognition. San Diego, CA, USA: Academic, 1990. [
DOI:10.1016/B978-0-08-047865-4.50007-7] [
PMID]
11. [11] B.C. Kuo, D.A. Landgrebe, "Nonparametric weighted feature extraction for classification", IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 5, pp. 1096-1105, 2004. [
DOI:10.1109/TGRS.2004.825578]
12. [12] J. Xu, J. Yang, Z. Gu, and N. Zhang, "Median-mean line based discriminant analysis", Neuro-computing, vol. 123, pp. 233-246, 2014. [
DOI:10.1016/j.neucom.2013.07.012]
13. [13] X.F.He, P.Niyogi, "Locality preserving project-tions", In: Advances in Neural Information Pro-cessing System, vol. 16, pp. 153-160, 2004. [
DOI:10.1016/j.ins.2003.08.012]
14. [14] M. Imani, H. Ghassemian, "Nonparametric Supervis Feature Extraction for Classification of Hyperspectral Images Using Limited Training Samples", Electronics Industries Quarterly, vol. 4, no.3, Autumn 2013.
15. [15] M. Imani, H. Ghassemian, "Band Clustering-Based Feature Extraction for Classification of Hyperspectral Images Using Limited Training Samples", IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 8, pp. 1325-1329, 2014. [
DOI:10.1109/LGRS.2013.2292892]
16. [16] M. Imani, H. Ghassemian, "Feature Extraction Using Attraction Points for Classification of Hyperspectral Images in a Small Sample Size Situation", IEEE Geoscience and Remote Sen-sing Letters, vol. 11, no. 11, pp. 1986-1990, 2014. [
DOI:10.1109/LGRS.2014.2316134]
17. [17] M. Imani, H. Ghassemian, "Classification of Hyperspectral Images Using Cluster Space Linear Discriminant Analysis and Small Training Set", Iranian Journal of Electrical and Computer Engineering, vol. 14, no. 1, pp. 73-81, June 2016.
18. [18] M. Imani, H. Ghassemian, "Feature space discriminant analysis for hyperspectral data feature reduction", ISPRS Journal of Photo-grammetry and Remote Sensing, vol. 102, pp. 1-13, 2015. [
DOI:10.1016/j.isprsjprs.2014.12.024]
19. [19] M. Imani, H. Ghassemian, "Feature Extraction Using Weighted Training Samples", IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 7, pp. 1387 - 1386, 2015. [
DOI:10.1109/LGRS.2015.2402167]
20. [20] M. Imani, H. Ghassemian, "Feature reduction of hyperspectral images: discriminant analysis and the first principal component", Journal of AI and Data Mining, vol. 3, no. 1, pp.1-9, 2015. [
DOI:10.5829/idosi.JAIDM.2015.03.01.01]
21. [21] G. H. Golub, and C. F.van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: The Johns Hopkins Univ. Press, 1996.
22. [22] M. Yang, N. Ahuja, and D. Kriegman, "Face recognition using kernel eigenfaces", Proc. International Conference on Image processing, 2000, pp. 37-40.
23. [23] V. D. M Nhat, and S. Lee, "Kernel-based 2DPCA for Face Recognition", Proc. IEEE International Symposium on Signal Processing and Infor-mation Technology, IEEE, December. 2007, pp. 35-39. [
DOI:10.1109/ISSPIT.2007.4458104]