1. [1] J. J. Lloyd, "The Complexity of Recolouring Photos," 2017. [Online]. Available: https-://www.fxguide.com/featured/the-complexity-of-re-colouring-photos/.
2. [2] "r/colorizationrequests." [Online]. Available: https://www.reddit.com/r/colorizationrequests.
3. [3] P. Whitt, Pro Photo Colorizing with GIMP. Apress, 2016. [
DOI:10.1007/978-1-4842-1949-2]
4. [4] S. Koo, "Automatic Colorization with Deep Convolutional Generative Adversarial Networks," 2016. [Online]. Available: http://cs231n.stan-ford.edu/reports2016/224_Report.pdf.
5. [5] Aleju, "Aleju Torch Colorizer," 2016. [Online]. Available: https://github.com/aleju/colorizer.
6. [6] R. Zhang, P. Isola, and A. A. Efros, "Colorful Image Colorization," Eccv, pp. 1-25, 2016. [
DOI:10.1007/978-3-319-46487-9_40]
7. [7] R. Dahl, "Automatic Colorization," 2016. [Online]. Available: http://tinyclouds.org/colo-rize/.
8. [8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks," Jun. 2014.
9. [9] A. Radford, L. Metz, and S. Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks," arXiv, pp. 1-15, 2015.
10. [10] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, "Generative Adversarial Text to Image Synthesis," Icml, pp. 1060-1069, 2016.
11. [11] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein GAN," Jan. 2017.
12. [12] M. Mirza and S. Osindero, "Conditional Generative Adversarial Nets," CoRR, pp. 1-7, 2014.
13. [13] A. Levin, D. Lischinski, and Y. Weiss, "Colorization using optimization," ACM Trans. Graph., vol. 23, no. 3, p. 689, 2004. [
DOI:10.1145/1015706.1015780]
14. [14] Y.-C. Huang, Y.-S. Tung, J.-C. Chen, S.-W. Wang, and J.-L. Wu, "An adaptive edge detection based colorization algorithm and its applications," Proc. 13th Annu. ACM Int. Conf. Multimed. - Multimed. '05, no. January, p. 351, 2005. [
DOI:10.1145/1101149.1101223]
15. [15] L. Yatziv and G. Sapiro, "Fast image and video colorization using chrominance blending," IEEE Trans. Image Process., vol. 15, no. 5, pp. 1120-1129, 2006. [
DOI:10.1109/TIP.2005.864231] [
PMID]
16. [16] T. Welsh, M. Ashikhmin, and K. Mueller, "Transferring color to greyscale images," ACM Trans. Graph., vol. 21, no. 3, pp. 277-280, 2002. [
DOI:10.1145/566654.566576]
17. [17] R. Gupta, A. Chia, and D. Rajan, "Image colorization using similar images," Proc. 20th …, pp. 369-378, 2012. [
DOI:10.1145/2393347.2393402]
18. [18] Z. Cheng, Q. Yang, and B. Sheng, "Deep colorization," Proc. IEEE Int. Conf. Comput. Vis., vol. 11-18-Dece, pp. 415-423, 2016.
19. [19] A. Deshpande, J. Rock, and D. Forsyth, "Learning large-scale automatic image colorization," Proc. IEEE Int. Conf. Comput. Vis., vol. 11-18-Dece, pp. 567-575, 2016.
20. [20] G. Charpiat, M. Hofmann, and B. Schölkopf, "Automatic image colorization via multimodal predictions," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5304 LNCS, no. PART 3, pp. 126-139, 2008. [
DOI:10.1007/978-3-540-88690-7_10]
21. [21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015. [
DOI:10.1007/s11263-015-0816-y]
22. [22] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Iclr, vol. 96, no. 2, pp. 1-14, 2015.
23. [23] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Arxiv.Org, vol. 7, no. 3, pp. 171-180, 2015.
24. [24] S. Iizuka, Edgar Simo-Serra, and H. Ishikawa, "Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification," Siggraph '16, vol. 35, no. 4, pp. 1-11, 2016. [
DOI:10.1145/2897824.2925974]
25. [25] A. Krizhevsky, Ii. Sulskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Nips, 2012, pp. 1-9.
26. [26] A. Odena, V. Dumoulin, and C. Olah, "Deconvolution and Checkerboard Artifacts," Drill, pp. 1-14, 2016. [
DOI:10.23915/distill.00003]
27. [27] Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," Proc. IEEE Int. Conf. Comput. Vis., vol. 11-18-Dece, pp. 3730-3738, 2016.
28. [28] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, "MS-Celeb-1M : Challenge of Recognizing One Million Celebrities in the Real World," Eur. Conf. Comput. Vis., pp. 87-102, 2016. [
DOI:10.2352/ISSN.2470-1173.2016.11.IMAWM-463]
29. [29] M. D. Zeiler, "ADADELTA: An Adaptive Learning Rate Method," arXiv, p. 6, 2012.
30. [30] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," Int. Conf. Learn. Represent., 2014.