1. [1] P. D. Turney, "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews," in Proceedings of the 40th annual meeting on association for computational linguistics, 2002, pp. 417-424.
2. [2] B. Pang and L. Lee, "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales," presented at the Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 2005. [
DOI:10.3115/1219840.1219855]
3. [3] E. Riloff and J. Wiebe, "Learning extraction patterns for subjective expressions," presented at the Proceedings of the 2003 conference on Empirical methods in natural language process-ing, 2003. [
DOI:10.3115/1119355.1119369]
4. [4] S.-M. Kim and E. Hovy, "Extracting opinions, opinion holders, and topics expressed in online news media text," presented at the Proceedings of the Workshop on Sentiment and Subjectivity in Text, 2006. [
DOI:10.3115/1654641.1654642]
5. [5] C. O. Alm, "Subjective natural language problems: motivations, applications, character-izations, and implications," presented at the Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2, 2011.
6. [6] L. Barbosa and J. Feng, "Robust sentiment detection on twitter from biased and noisy data," presented at the Proceedings of the 23rd International Conference on Computational Lin-guistics: Posters, 2010.
7. [7] M. Abdul-Mageed, M. Diab, and M. Korayem, "Subjectivity and sentiment analysis of modern standard Arabic," presented at the Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011.
8. [8] I. Habernal, T. Ptáček, and J. Steinberger, "Supervised sentiment analysis in Czech social media," Information Processing & Management, vol. 50, pp. 693-707, 2014. [
DOI:10.1016/j.ipm.2014.05.001]
9. [9] H. Guo, H. Zhu, Z. Guo, X. Zhang, and Z. Su, "OpinionIt: a text mining system for cross-lingual opinion analysis," in Proceedings of the 19th ACM international conference on Informa-tion and knowledge management, 2010, pp. 1199-1208. [
DOI:10.1145/1871437.1871589]
10. [10] D. Gao, F. Wei, W. Li, X. Liu, and M. Zhou, "Cross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation," Computational Linguistics, vol. 41, pp. 21-40, 2015. [
DOI:10.1162/COLI_a_00207]
11. [11] M.-T. Martín-Valdivia, E. Martínez-Cámara, J.-M. Perea-Ortega, and L. Alfonso Ure-a-López, "Sentiment polarity detection in Spanish reviews combining supervised and unsupervised appro-aches," Expert Systems with Applications, vol. 40, pp. 3934-3942, 2012. [
DOI:10.1016/j.eswa.2012.12.084]
12. [12] C. Banea, R. Mihalcea, and J. Wiebe, "Porting Multilingual Subjectivity Resources Across Languages," IEEE Transactions on Affective Computing, vol. 4, 2013.
13. [13] A. Balahur and M. Turchi, "Comparative Experiments Using Supervised Learning and Machine Translation for Multilingual Sentiment Analysis," Computer Speech & Language, vol. 28, pp. 56–75, 2013. [
DOI:10.1016/j.csl.2013.03.004]
14. [14] M. Okada and K. Hashimoto, "Investigation of Preprocessing of Multilingual Online Reviews for Automatic Classification," in Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference on, 2012, pp. 306-309. [
DOI:10.1109/ICIS.2012.64]
15. [15] X. Ding, B. Liu, and P. S. Yu, "A holistic lexicon-based approach to opinion mining," in Proceed-ings of the international conference on Web search and web data mining, 2008, pp. 231-240.
16. [16] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, "Lexicon-based methods for sentiment analysis," Computational linguistics, vol. 37, pp. 267-307, 2011. [
DOI:10.1162/COLI_a_00049]
17. [17] J. Kamps, M. Marx, R. J. Mokken, and M. De Rijke, "Using wordnet to measure semantic orientations of adjectives," in Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), 2004, pp. 1115-1118.
18. [18] A. Fahrni and M. Klenner, "Old wine or warm beer: Target-specific sentiment analysis of adjectives," in Proc. of the Symposium on Affective Language in Human and Machine, AISB, 2008, pp. 60-63.
19. [19] V. Hatzivassiloglou and K. R. McKeown, "Predicting the semantic orientation of adjec-tives," in Proceedings of the eighth confer-ence on European chapter of the Associa-tion for Computational Linguistics, 1997, pp. 174-181. [
DOI:10.3115/979617.979640]
20. [20] N. Kaji and M. Kitsuregawa, "Building Lexicon for Sentiment Analysis from Massive Collection of HTML Documents," in EMNLP-CoNLL, 2007, pp. 1075-1083.
21. [21] L. Velikovich, S. Blair-Goldensohn, K. Hannan, and R. McDonald, "The viability of web-derived polarity lexicons," in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010, pp. 777-785. [
PMID]
22. [22] H. Takamura, T. Inui, and M. Okumura, "Extracting semantic orientations of words using spin model," in Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 2005, pp. 133-140. [
DOI:10.3115/1219840.1219857]
23. [23] A. Esuli and F. Sebastiani, "Pageranking wordnet synsets: An application to opinion mining," presented at the Proceedings of the 43rd Annual Meeting on Association for Computational Lin-guistics (ACL), Prague, Czech Republic, 2007.
24. [24] D. Rao and D. Ravichandran, "Semi-supervised polarity lexicon induction," in Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, 2009, pp. 675-682. [
DOI:10.3115/1609067.1609142]
25. [25] S. Poria, A. Gelbukh, A. Hussain, N. Howard, D. Das, and S. Bandyopadhyay, "Enhanced Sentic-Net with affective labels for concept-based opinion mining," IEEE Intelligent Systems, vol. 28, pp. 31-38, 2013. [
DOI:10.1109/MIS.2013.4]
26. [26] S. Gindl, A. Weichselbraun, and A. Scharl, "Extracting and Grounding Contextualized Sentiment Lexicons," 2013.
27. [27] D. Tang, F. Wei, B. Qin, M. Zhou, and T. Liu, "Building Large-Scale Twitter-Specific Senti-ment Lexicon: A Representation Learning Appr-oach," in the 25th International Conference on Computational Linguistics (COLING), 2014, pp. 172-182.
28. [28] S. Nofersti and M. Shamsfard, "Automatic building a corpus and exploiting it for polarity classification of indirect opinions about drugs.", in Journal of Signal and Data Processing (JSDP), 2016; 13 (2), pp.35-49.
29. [29] H. Kanayama and T. Nasukawa, "Fully automatic lexicon expansion for domain-oriented sentiment analysis," in Proceedings of the 2006 conference on empirical methods in natural language processing, 2006, pp. 355-363. [
DOI:10.3115/1610075.1610125]
30. [30] A. Hassan and D. Radev, "Identifying text polarity using random walks," in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 2010, pp. 395-403. [
PMID] [
PMCID]
31. [31] A. Hassan, A. Abu-Jbara, R. Jha, and D. Radev, "Identifying the semantic orientation of foreign words," in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2, 2011, pp. 592-597.
32. [32] I. Dehdarbehbahani, A. Shakery, and H. Faili, "Semi-supervised word polarity identification in resource-lean languages," Neural Networks, vol. 58, pp. 50-59, 2014. [
DOI:10.1016/j.neunet.2014.05.018] [
PMID]
33. [33] S. Baccianella, A. Esuli, and F. Sebastiani, "SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining," in LREC, 2010, pp. 2200-2204.
34. [34] A. Esuli and F. Sebastiani, "Sentiwordnet: A publicly available lexical resource for opinion mining," in Proceedings of 5th International Conference on Language Resources and Evaluation (LREC), Genoa, 2006, pp. 417-422.
35. [35] A. Neviarouskaya, H. Prendinger, and M. Ishizuka, "SentiFul: A lexicon for sentiment ana-lysis," IEEE Transactions on Affective Com-puting, vol. 2, pp. 22-36, 2011. [
DOI:10.1109/T-AFFC.2011.1]
36. [36] A. Neviarouskaya, H. Prendinger, and M. Ishizuka, "Textual affect sensing for sociable and expressive online communication," in Interna-tional Conference on Affective Computing and Intelligent Interaction, 2007, pp. 218-229. [
DOI:10.1007/978-3-540-74889-2_20]
37. [37] C. Strapparava and A. Valitutti, "WordNet Affect: an Affective Extension of WordNet," in Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC), 2004, pp. 1083-1086.
38. [38]] E. Cambria, R. Speer, C. Havasi, and A. Hussain, "SenticNet: A Publicly Available Semantic Resource for Opinion Mining," in AAAI fall symposium: commonsense knowledge, 2010.
39. [39] M. E. Basiri, A. R. Naghsh-Nilchi, and N. Ghassem-Aghaee, "A Framework for Sentiment Analysis in Persian," Open Transactions on Information Processing, vol. 1, pp. 1-14, 2014. [
DOI:10.15764/OTIP.2014.03001]
40. [40] F. Amiri, S. Scerri, and M. H. Khodashahi, "Lexicon-based Sentiment Analysis for Persian Text," in Recent Advances in Natural Language Processing, 2015, pp. 9-16.
41. [41] M. Shams, A. Shakery, and H. Faili, "A non-parametric LDA-based induction method for sentiment analysis," in Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on, 2012, pp. 216-221. [
DOI:10.1109/AISP.2012.6313747]
42. [42] A.Mardani and S.A.Aghaie "A superviesd method for opinion mining in Persian using lexicon and SVM algorithm", in National Journal of Information Technology Management, 2015(7), pp. 345-362.
43. [43] S. Cerini, V. Compagnoni, A. Demontis, M. Formentelli, and G. Gandini, "Micro-WNOp: A gold standard for the evaluation of automatically compiled lexical resources for opinion mining," Language resources and linguistic theory: Typo-logy, second language acquisition, English ling-uistics, pp. 200-210, 2007. [
PMCID]
44. [44] A. Montejo-Ráez, E. Martínez-Cámara, M. T. Martín-Valdivia, and L. A. Ure-a-López, "Ranked wordnet graph for sentiment polarity classification in twitter," Computer Speech & Language, vol. 28, pp. 93-107, 2014. [
DOI:10.1016/j.csl.2013.04.001]
45. [45] M. Montazery and H. Faili, "Automatic Persian wordnet construction," in Proceedings of the 23rd International Conference on Computational Linguistics: Posters, 2010, pp. 846-850.
46. [46] K. N. Lam, F. A. Tarouti, and J. Kalita, "Automatically constructing Wordnet synsets," in 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), Ba-ltimore, USA, 2014. [
DOI:10.3115/v1/P14-2018]
47. [47] M. Shamsfard, A. Hesabi, H. Fadaei, N. Mansoory, A. Famian, S. Bagherbeigi, et al., "Semi automatic development of farsnet; the persian wordnet," in Proceedings of 5th Global WordNet Conference, Mumbai, India, 2010.
48. [48] P. Vossen, "A multilingual database with lexical semantic networks," Computational Linguistics vol. 25, pp. 628-630, 1998. [
DOI:10.1007/978-94-017-1491-4]
49. [49] F. Keyvan, H. Borjian, M. Kasheff, and C. Fellbaum, "Developing persianet: The persian wordnet," in 3rd Global wordnet conference, 2007, pp. 315-318.
50. [50] A. Famian and D. Aghajaney, "Towards Building a WordNet for Persian Adjectives," International Journal of lexicography, pp. 307-308, 2006.
51. [51] M. Fadaee, H. Ghader, H. Faili, and A. Shakery, "Automatic WordNet Construction Using Markov Chain Monte Carlo," Polibits, pp. 13-22, 2013.
52. [52] N. Taghizadeh and H. Faili, "Automatic Wordnet Development for Low-resource Languages using Cross-lingual WSD," Journal of Artificial Intelligence Research, vol. 56, pp. 61-87, 2016. [
DOI:10.1613/jair.4968]
53. [53] F. Mahdisoltani, J. Biega, and F. Suchanek, "YAGO3: A knowledge base from multilingual Wikipedias," in 7th Biennial Conference on Innovative Data Systems Research, 2014.
54. [54] A. AleAhmad, H. Amiri, E. Darrudi, M. Rahgozar, and F. Oroumchian, "Hamshahri: A standard Persian text collection," Knowledge-Based Systems, vol. 22, pp. 382-387, 2009. [
DOI:10.1016/j.knosys.2009.05.002]
55. [55] H. Eghbalzadeh, B. Hosseini, S. Khadivi, and A. Khodabakhsh, "Persica: A Persian corpus for multi-purpose text mining and Natural language processing," in Telecommunications (IST), 2012 Sixth International Symposium on, 2012, pp. 1207-1214. [
DOI:10.1109/ISTEL.2012.6483172]
56. [56] A. Balali, A. Rajabi, S. Ghassemi, M. Asadpour, and H. Faili, "Content diffusion prediction in social networks," in 5th Conference on Informa-tion and Knowledge Technology (IKT), 2013, pp. 467-471. [
DOI:10.1109/IKT.2013.6620114]
57. [57] P. Turney, "Mining the web for synonyms: PMI-IR versus LSA on TOEFL," in 12th European Conference on Machine Learning (ECML 2001), Freiburg, Germany, 2001, pp. 491-502. [
DOI:10.1007/3-540-44795-4_42]
58. [58] K. Denecke, "Using sentiwordnet for multi-lingual sentiment analysis," in Data En-gineering Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on, 2008, pp. 507-512.
59. [59] C. M. Özsert and A. Özgür, "Word polarity detection using a multilingual approach," in Computational Linguistics and Intelligent Text Processing, ed: Springer, 2013, pp. 75-82. [
DOI:10.1007/978-3-642-37256-8_7]
60. [60] J. Steinberger, M. Ebrahim, M. Ehrmann, A. Hurriyetoglu, M. Kabadjov, P. Lenkova, et al., "Creating sentiment dictionaries via triangula-tion," Decision Support Systems, vol. 53, pp. 689-694, 2012. [
DOI:10.1016/j.dss.2012.05.029]
61. [61] F. L. Cruz, J. A. Troyano, B. Pontes, and F. J. Ortega, "Building layered, multilingual sentim-ent lexicons at synset and lemma levels," Expert Systems with Applications, vol. 41, pp. 5984-5994, 2014. [
DOI:10.1016/j.eswa.2014.04.005]
62. [62] F. H. Mahyoub, M. A. Siddiqui, and M. Y. Dahab, "Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning," Journal of King Saud University-Computer and Information Sciences, vol. 26, pp. 417-424, 2014. [
DOI:10.1016/j.jksuci.2014.06.003]
63. [63] Y. Chen and S. Skiena, "Building sentiment lexicons for all major languages," in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), 2014, pp. 383-389. [
DOI:10.3115/v1/P14-2063]
64. [64] M. Shamsfard, "Challenges and open problems in Persian text processing," Proceedings of LTC, vol. 11, 2011.
65. [65] W. Feely, M. Manshadi, R. Frederking, and L. Levin, "The CMU METAL Farsi NLP App-roach," in Proceedings of the Ninth Interna-tional Conference on Language Resources and Evaluation (LREC'14), 2014, pp. 4052-4055.
66. [66] R. Duwairi and M. El-Orfali, "A study of the effects of preprocessing strategies on sentiment analysis for Arabic text," Journal of Information Science, vol. 40, pp. 501-513, 2014. [
DOI:10.1177/0165551514534143]
67. [67] W. Chamlertwat, P. Bhattarakosol, T. Rung-kasiri, and C. Haruechaiyasak, "Discover-ing Consumer Insight from Twitter via Sentiment Analysis," J. UCS, vol. 18, pp. 973-992, 2012.
68. [68] M.-T. Martín-Valdivia, E. Martínez-Cámara, J.-M. Perea-Ortega, and L. A. Ure-a-López, "Sentiment polarity detection in Spanish reviews combining supervised and unsupervised appro-aches," Expert Systems with Applications, vol. 40, pp. 3934-3942, 2013. [
DOI:10.1016/j.eswa.2012.12.084]
69. [69] K. Denecke, "Are SentiWordNet scores suited for multi-domain sentiment classification?," present-ed at the Fourth International Conference on Di-gital Information Management, (ICDIM 2009), 2009. [
DOI:10.1109/ICDIM.2009.5356764]