1. [1] Hakimi, Z., Ahmadifar, H.," Delimitation for Using Residue Number Systems", 4th Conference on Electrical and Computer Engineering Technology, E-TECH2019, ITRC, Tehran, 1398.
2. [2] Omondi, A., Premkumar, B., "Residue Number Systems - Theory and Implementation", Imperial College Press (ICP), 2007. [
DOI:10.1142/9781860948671]
3. [3] Belghadr, A., Jaberipur, G., "FIR Filter Realization via Deferred End-Around Carry Modular Addition", IEEE TCAS I, Vol. 65, pp. 2878 - 2888, 2018. [
DOI:10.1109/TCSI.2018.2798595]
4. [4] Xiao, L., Xiang-Gen, X., "Robust Polynomial Reconstruction via Chinese Remainder Theorem in the Presence of Small Degree Residue Errors", IEEE TCAS II: Vol. 65 , Issue: 11, pp. 1778 - 1782, 2018. [
DOI:10.1109/TCSII.2017.2756343]
5. [5] Sousa, L., Antao, S., Martins, P., "Combining Residue Arithmetic to Design Efficient Cryptographic Circuits and Systems", IEEE Circuits and Systems Magazine, Vol.16, Issue:4, pp. 6-32, 2016. [
DOI:10.1109/MCAS.2016.2614714]
6. [6] Tay, T., Chang, C.-H., "A non-iterative multiple residue digit error detection and correction algorithm in RRNS", IEEE Transactions on Computers, Vol. 65 , Issue: 2, pp. 396 - 408, 2016. [
DOI:10.1109/TC.2015.2435773]
7. [7] Koren I, "Computer Arithmetic Algorithms", 2d Edition, A.K. Peters Ltd, 2002.
8. [8] Hiasat, A, "An Efficient Reverse Converter for the Three-Moduli Set { 2^(n+1)-1,2^n,2^n-1 }", IEEE Transactions on Circuits and Systems II, Vol. 64, Issue: 8 pp. 962 - 966, 2017. [
DOI:10.1109/TCSII.2016.2608335]
9. [9] Ahmadifar, A., and G. Jaberipur, "Improved modulo-2^q±3 multipliers," in Proc. Of the 17th CSI International Symposium on Computer Architecture and Digital Systems (CADS2013), Tehran, Iran, pp. 31-35.
10. [10] Patronik, P., Piestrak, S.J., "Hardware/Software Approach to Designing Low-Power RNS-Enhanced Arithmetic Units," IEEE TCAS I, Vol. 64, 2017. [
DOI:10.1109/TCSI.2017.2669108]
11. [11] Ahmadifar, H., Jaberipur, G., "A New Residue Number System with 5-Moduli Set: {22q,2q±3,2q±1}", The Computer Journal, Vol. 58 , Issue: 7, pp.1548 - 1565, 2015. [
DOI:10.1093/comjnl/bxu084]
12. [12] Wang Y, Song X, Aboulhamid M, Shen H, " Adder Based Residue to Binary Number Converters for {2^n- 1,2^n,2^n + 1}", IEEE Transactions on Signal Processing, Vol. 50, No. 7, July 2002. [
DOI:10.1109/TSP.2002.1011216]
13. [13] Jaberipur, G., B. Parhami, and S. Nejati, "On Building General Modular Adders from Standard Binary Arithmetic Components," Proc. 45th Asilomar Conf. Signals, Systems, and Computers, 6-9 Nov., Pacific Grove, CA, USA, pp. 154-159, 2011. [
DOI:10.1109/ACSSC.2011.6189975]
14. [14] Kalamatianos L, Nikolos D, Efstathiou C, T. Vergos H, Kalamatianos J, "High-Speed Parallel-Prefix Modulo 2^n-1 Adders," IEEE Trans. Computers, Vol. 49, No. 7, special issue on computer arithmetic, pp. 673-680, July 2000. [
DOI:10.1109/12.863036]
15. [15] Efstathiou C., H. T. Vergos, and D. Nikolos, "Fast Parallel-Prefix 2^n+1 Adder", IEEE Trans. on Computers, Vol. 53, No. 9, pp. 1211-1216, September 2004. [
DOI:10.1109/TC.2004.60]
16. [16] Jaberipur G, Alavi H, "Comment on "Fast Parallel Prefix Modulo 2^n+1 Adder", IEEE Trans. on Computers, Vol. 64, No. 1, pp. 293-294, January 2015. [
DOI:10.1109/TC.2013.160]
17. [17] Cardirilli, G.C., Nunzio, L.D., Fazzolari, R., Nannarelli, A., et al," Design Space Exploration Based Methodology for Residue Number System Digital Filters Implementation", IEEE Trans. On Emerging Topics in Computing, Early Access,25 May, 2020.