Volume 19, Issue 4 (3-2023)                   JSDP 2023, 19(4): 71-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Norouzzadeh Gilmolk A M, Aref M R, Ramazani Khorshidoust R. Design of cybernetic metamodel of cryptographic algorithms and ranking of its supporting components using ELECTRE III method. JSDP 2023; 19 (4) : 6
URL: http://jsdp.rcisp.ac.ir/article-1-1171-en.html
Sharif Univessity
Abstract:   (1406 Views)
Nowadays, achieving desirable and stable security in networks with national and organizational scope and even in sensitive information systems, should be based on a systematic and comprehensive method and should be done step by step. Cryptography is the most important mechanism for securing information. a cryptographic system consists of three main components: cryptographic algorithms, cryptographic keys, and security protocols, which are mainly based on cryptographic algorithms. In designing a cryptographic algorithm, all the necessary components of information security must be considered in a model of excellence in technical, organizational, procedural and human aspects. To meet these needs, we must first extract the effective components in the design and implementation of cryptographic algorithms based on a model and then determine the impact of the components. In this paper, we use cybernetic methodology to prepare a   metamodel.
 
The cryptographic cybernetics metamodel has four components: " strategy / policy ", "main process", "support process" and "control process". The "main process" has four stages and also, the "suport process" includes 13 components of hardware and software. The interactions of these two processes shape its structure, leading to a complex graph. To prioritize suport components for resource allocation and cryptography strategy, it is necessary to rank these components in the designed metamodel. To overcome this complexity in order to rank the support components, we use the ELECTRE III method, which is a multi-criteria decision-making method. The results show that the components with high priority for the development of the cryptographic system are: Research and Development, Human Resources, Management, Organizational, Information and Communication Technology, Rrules and Regulations and standards. These results are consistent with reports published by the ITU in 2015, 2017 and 2018.
Article number: 6
Full-Text [PDF 779 kb]   (995 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2020/09/4 | Accepted: 2020/10/21 | Published: 2023/03/20 | ePublished: 2023/03/20

References
1. [1] L. J. Fennelly, M. Beaudry, and M. A. Perry, "Security in 2025."
2. [2] Thales, "Global encryption trends study, " Ponemon Institute Research, 2018. https://www.ncipher.com/2018/global-encryption-trendsstudy.
3. [3] P. Kuppuswamy and S. Q. Y. Al-Khalidi, "Hybrid encryption/decryption technique using new public key and symmetric key algorithm," Int. J. Inf. Comput. Secur., vol. 6, no. 4, pp. 372-382, 2014, doi: 10.1504/IJICS.2014.068103. [DOI:10.1504/IJICS.2014.068103]
4. [4] A. Vassilev, L. Feldman, and G. Witte, "ITL Bulletin for September 2018 AUTOMATED CRYPTOGRAPHIC VALIDATION (ACV) testing" no. September, pp. 1-4, 2018.
5. [5] NIST, "NIST Cryptographic Standards and Guidelines Development Process, " Nist, p. 27, 2016, doi: 10.6028/NIST.IR.7977. [DOI:10.6028/NIST.IR.7977]
6. [6] NIST, "Report on Lightweight Cryptography March 2017 • Final Publication: 10.6028/NIST.IR.8114 (which links to • Information on other NIST cybersecurity publications a, " Nist, vol. 8114, no. March, 2017. []
7. [7] G. Alagic et al., "Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process, " pp. 1-39, 2020, doi: 10.6028/NIST.IR.8240. [DOI:10.6028/NIST.IR.8240]
8. [8] V. Cerf, E. Felten, S. Lipner, B. Preneel, and E. Richey, "NIST cryptographic standards and guidelines development process: Report and recommendations of the Visiting Committee on Advanced Technology of," 2014.
9. [9] I. Damaj and S. Kasbah, "An Analysis Framework for Hardware and Software Implementations with Applications from Cryptography," 2019, doi: 10.1016/j.compeleceng.2017.06.008. [DOI:10.1016/j.compeleceng.2017.06.008]
10. [10] S. Keller, "The Cryptographic Algorithm Validation Program, " no. September, 2004.
11. [11] S. Bhat and V. Kapoor, "Secure and Efficient Data Privacy, Authentication and Integrity Schemes Using Hybrid Cryptography, " in Advances in Intelligent Systems and Computing, 2019, vol. 870, pp. 279-285, doi: 10.1007/978-981-13-2673-8_30. [DOI:10.1007/978-981-13-2673-8_30]
12. [12] P. Patil and P. Narayankar, "A Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish, " Procedia - Procedia Comput. Sci., vol. 78, pp. 617-624, 2016, doi: 10.1016/j.procs.2016.02.108. [DOI:10.1016/j.procs.2016.02.108]
13. [13] A. A. Soofi, I. Riaz, and U. Rasheed, "An Enhanced Vigenere Cipher For Data Security, " Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 141-145, 2015.
14. [14] D. Karaoğlan Altop, A. Levi, and V. Tuzcu, "Deriving cryptographic keys from physiological signals, " Pervasive Mob. Comput., vol. 39, pp. 65-79, 2017, doi: 10.1016/j.pmcj.2016.08.004. [DOI:10.1016/j.pmcj.2016.08.004]
15. [15] O. Uzunkol and M. S. Kiraz, "Still wrong use of pairings in cryptography, " Appl. Math. Comput., vol. 333, pp. 467-479, 2018, doi: 10.1016/j.amc.2018.03.062. [DOI:10.1016/j.amc.2018.03.062]
16. [16] P. Pawlak and P.-N. Barmpaliou, "Politics of cybersecurity capacity building: conundrum and opportunity," J. Cyber Policy, vol. 2, no. 1, pp. 123-144, Jan. 2017, doi: 10.1080/23738871.2017.1294610. [DOI:10.1080/23738871.2017.1294610]
17. [17] I. Mohammed and A. Musa Bade, "CYBERSECURITY CAPABILITY MATURITY MODEL FOR NETWORK SYSTEM Cyber Security Capability Maturity Model for Critical IT Infrastructure among Financial Organizations View project CYBERSECURITY CAPABILITY MATURITY MODEL FOR NETWORK SYSTEM," 2019. Accessed: Aug. 27, 2020. [Online]. Available: http://www.journalijdr.com.
18. [18] T. Roberts, "Cyber Security Capability Maturity Model (CMM) -Pilot. Retrieved February 18, 2016," 2014.
19. [19] F. Heylighen, "04. Cybernetics and second order cybernetics, " Encycl. Phys. Sci. Technol., pp. 1-24, 2001, [Online]. Available: http://www.nomads.usp.br/pesquisas/design/objetos_interativos/arquivos/restrito/heylighen_Cybernetics and Second-Order Cybernetics.pdf.
20. [20] A. Kappos and W. Pohlit, "A cybernetic model for radiation reactions in living cells: I. Sparsely-ionizing radiations; stationary cells, " Int. J. Radiat. Biol., vol. 22, no. 1, pp. 51-65, 1972, doi: 10.1080/09553007214550781. [DOI:10.1080/09553007214550781] [PMID]
21. [21] K. D. Jones and D. S. Kompala, "Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures, " J. Biotechnol., vol. 71, no. 1-3, pp. 105-131, 1999, doi: 10.1016/S0168-1656(99)00017-6. [DOI:10.1016/S0168-1656(99)00017-6] [PMID]
22. [22] R. K. Pitman, "A cybernetic model of obsessive-compulsive psychopathology, " Compr. Psychiatry, vol. 28, no. 4, pp. 334-343, 1987, doi: 10.1016/0010-440X(87)90070-8. [DOI:10.1016/0010-440X(87)90070-8] [PMID]
23. [23] E. Wolfe and P. L. Perrewe, "A Cybernetic Model of Impression Management Processes in Organizations, " Organ. Behav. Hum. Decis. Process., vol. 69, no. 1, pp. 9-30, 1997. [DOI:10.1006/obhd.1996.2669]
24. [24] L. F. van Egeren, "A cybernetic model of global personality traits, " Personal. Soc. Psychol. Rev., vol. 13, no. 2, pp. 92-108, 2009, doi: 10.1177/1088868309334860. [DOI:10.1177/1088868309334860] [PMID]
25. [25] C. S. Carver, "A cybernetic model of self-attention processes, " J. Pers. Soc. Psychol., vol. 37, no. 8, pp. 1251-1281, 1979, doi: 10.1037/0022-3514.37.8.1251. [DOI:10.1037/0022-3514.37.8.1251]
26. [26] M. P.A, M. H. S.M, and A. M.R, "General cybernetic model for innovation network management," Procedia - Soc. Behav. Sci., vol. 41, pp. 577-586, 2012, doi: 10.1016/j.sbspro.2012.04.070. [DOI:10.1016/j.sbspro.2012.04.070]
27. [27] K. T. Cho, "Multicriteria decision methods: An attempt to evaluate and unify, " Math. Comput. Model., vol. 37, no. 9-10, pp. 1099-1119, 2003, doi: 10.1016/S0895-7177(03)00122-5. [DOI:10.1016/S0895-7177(03)00122-5]
28. [28] P. P. Bhangale, V. P. Agrawal, and S. K. Saha, "Attribute based specification, comparison and selection of a robot, " Mech. Mach. Theory, vol. 39, no. 12 SPEC. ISS., pp. 1345-1366, 2004, doi: 10.1016/j.mechmachtheory.2004.05.020. [DOI:10.1016/j.mechmachtheory.2004.05.020]
29. [29] R. V. Rao and K. K. Padmanabhan, "Selection, identification and comparison of industrial robots using digraph and matrix methods, " Robot. Comput. Integr. Manuf., vol. 22, no. 4, pp. 373-383, 2006, doi: 10.1016/j.rcim.2005.08.003. [DOI:10.1016/j.rcim.2005.08.003]
30. [30] T. C. Chu and Y. C. Lin, "A fuzzy TOPSIS method for robot selection, " Int. J. Adv. Manuf. Technol., vol. 21, no. 4, pp. 284-290, 2003, doi: 10.1007 / s001700300033. [DOI:10.1007/s001700300033]
31. [31] T. Y. Wang, C. F. Shaw, and Y. L. Chen, "Machine selection in flexible manufacturing cell: A fuzzy multiple attribute decision-making approach, " Int. J. Prod. Res., vol. 38, no. 9, pp. 2079-2097, 2000, doi: 10.1080/002075400188519. [DOI:10.1080/002075400188519]
32. [32] C. Kahraman, S. Çevik, N. Y. Ates, and M. Gülbay, "Fuzzy multi-criteria evaluation of industrial robotic systems, " Comput. Ind. Eng., vol. 52, no. 4, pp. 414-433, 2007, doi: 10.1016/j.cie.2007.01.005. [DOI:10.1016/j.cie.2007.01.005]
33. [33] E. E. Karsak, "Robot selection using an integrated approach based on quality function deployment and fuzzy regression, " Int. J. Prod. Res., vol. 46, no. 3, pp. 723-738, 2008, doi: 10.1080/00207540600919571. [DOI:10.1080/00207540600919571]
34. [34] H. S. Shih, "Incremental analysis for MCDM with an application to group TOPSIS, " Eur. J. Oper. Res., vol. 186, no. 2, pp. 720-734, 2008, doi: 10.1016/j.ejor.2007.02.012. [DOI:10.1016/j.ejor.2007.02.012]
35. [35] P. Chatterjee, V. M. Athawale, and S. Chakraborty, "Selection of industrial robots using compromise ranking and outranking methods, " Robot. Comput. Integr. Manuf., vol. 26, no. 5, pp. 483-489, 2010, doi: 10.1016/j.rcim.2010.03.007. [DOI:10.1016/j.rcim.2010.03.007]
36. [36] KOOPMANS and T. C., "An analysis of production as an efficient combination of activities, " Act. Anal. Prod. Alloc., 1951, Accessed: Aug. 21, 2020. [Online]. Available: https://ci.nii.ac.jp/naid/10012485947.
37. [37] J. M. Wilson et al., "Book Selection Evolutionary Algorithms in Management Applications, " pp. 332-334, 1997.
38. [38] K. B. Williams, A. Charnes, and W. W. Cooper, "Management Models and Industrial Applications of Linear Programming, " or, vol. 13, no. 3, p. 274, 1962, doi: 10.2307/3006897. [DOI:10.2307/3006897]
39. [39] B. Roy, "Classement et choix en présence de points de vue multiples, " Rev. française d'informatique Rech. opérationnelle, vol. 2, no. 8, pp. 57-75, 1968, doi: 10.1051/ro/196802v100571. [DOI:10.1051/ro/196802V100571]
40. [40] M. Programming, N. P. Company, M. International, R. Received, and L. Programming, "A. X < _ b xi> _ O, " Math. Program., vol. 1, pp. 366-375, 1971. [DOI:10.1007/BF01584098]
41. [41] A. M. Geoffrion, J. S. Dyer, and A. Feinberg, "Interactive Approach for Multi-Criterion Optimization, With an Application To the Operation of an Academic Department., " Manage. Sci., vol. 19, no. 4 Part 1, pp. 357-368, 1972, doi: 10.1287/mnsc.19.4.357. [DOI:10.1287/mnsc.19.4.357]
42. [42] P. Salminen, J. Hokkanen, and R. Lahdelma, "Comparing multicriteria methods in the context of environmental problems, " Eur. J. Oper. Res., vol. 104, no. 3, pp. 485-496, 1998, doi: 10.1016/S0377-2217(96)00370-0. [DOI:10.1016/S0377-2217(96)00370-0]
43. [43] V. M. Ozernoy, "A Framework for Choosing the Most Appropriate Discrete Alternative Multiple Criteria Decision-Making Method in Decision Support Systems and Expert Systems, " no. 1977, pp. 56-64, 1987, doi: 10.1007/978-3-642-46609-0_6. [DOI:10.1007/978-3-642-46609-0_6]
44. [44] V. M. Ozernoy, "Choosing The 'Best' Multiple Criterlv Decision-Making Method, " INFOR Inf. Syst. Oper. Res., vol. 30, no. 2, pp. 159-171, 1992, doi: 10.1080/03155986.1992.11732192. [DOI:10.1080/03155986.1992.11732192]
45. [45] B. F. Hobbs, "What Can We Learn From Experiments in Multiobjective Decision Analysis?, " IEEE Trans. Syst. Man Cybern., vol. SMC-16, no. 3, pp. 384-394, 1986, doi: 10.1109/tsmc.1986.4308970. [DOI:10.1109/TSMC.1986.4308970]
46. [46] K. Stergiou, E. C. -… and M. Biology, and undefined 1997, "The Hellenic Seas: physics, chemistry, biology and fisheries, " pascal-francis.inist.fr, Accessed: Aug. 27, 2020. [Online]. Available: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2137587.
47. [47] R. J. Brachman, "The Process of Knowledge Discovery in Databases: A First Sketch, " pp. 1-11.
48. [48] J. Hokkanen and P. Salminen, "Choosing a solid waste management system using multicriteria decision analysis, " Eur. J. Oper. Res., vol. 98, no. 1, pp. 19-36, 1997, doi: 10.1016/0377-2217(95)00325-8. [DOI:10.1016/0377-2217(95)00325-8]
49. [49] H. Max, R. Jared, A. Don, and L. Kathleen, "Negotiation Reproduced with permission of the copyright owner. Further reproduction prohibited without permission., " 2000.
50. [50] R. Store and J. Kangas, "Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling, " Landsc. Urban Plan., vol. 55, no. 2, pp. 79-93, 2001, doi: 10.1016/S0169-2046(01)00120-7. [DOI:10.1016/S0169-2046(01)00120-7]
51. [51] P. Liu and X. Zhang, "Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method, " Int. J. Prod. Res., vol. 49, no. 3, pp. 637-646, Feb. 2011, doi: 10.1080/00207540903490171. [DOI:10.1080/00207540903490171]
52. [52] S. Ottosson, Developing and Managing Innovation in a Fast Changing and Complex World. 2019. [DOI:10.1007/978-3-319-94045-8]
53. [53] M.Ramazan Yarandi, "Desgn of strategic model for cryptography science and technology development in Islamic Republic of Iran, emphesis on cryptography algorithms and protocols", Thesis, 1398
54. [54] ITU, Global Cybersecurity Index 2018. 2019.
55. [55] ITU, Global Cybersecurity Index (GCI) 2017. 2017.
56. [56] E. Wolfe et al., "A hardware implementation of Simon cryptography algorithm, " Eur. J. Oper. Res., vol. 2, no. 3, p. 27, 2014, doi: 10.1051/ro/196802v100571. [DOI:10.1051/ro/196802V100571]
57. [57] I. Peña-López, "Global cybersecurity index & cyberwellness profiles," 2015, Accessed: Aug. 27, 2020. [Online]. Available: https://ictlogy.net/bibliography/reports/projects.php?idp=2848&lang=es.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing