1. [1] A. Zubiaga et al., "Detection and resolution of rumours in social media: A survey," ACM Comput. Surv., vol. 51, no. 2, p. 32, 2018. [
DOI:10.1145/3161603]
2. [2] C. Castillo, M. Mendoza, and B. Poblete, "Information credibility on twitter," in Proceedings of the 20th international conference on World wide web - WWW '11, 2011,pp. 675. [
DOI:10.1145/1963405.1963500]
3. [3] V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei, "Rumor has it: Identifying misinformation in microblogs," in Proceedings of the conference on empirical methods in natural language processing, 2011, pp. 1589-1599.
4. [4] R. Dayani, N. Chhabra, T. Kadian, and R. Kaushal, "Rumor: Detecting Misinformation in Twitter," in 3rd Security and Privacy Symposium, 2015.
5. [5] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, "Prominent Features of Rumor Propagation in Online Social Media," in 2013 IEEE 13th International Conference on Data Mining, 2013, pp. 1103-1108. [
DOI:10.1109/ICDM.2013.61] [
PMID] [
PMCID]
6. [6] S. Hamidian and M. T. Diab, "Rumor Detection and Classification for Twitter Data," in the Fifth International Conference on Social Media Technologies, Communication, and Informatics, 2015.
7. [7] G. Giasemidis et al., "Determining the veracity of rumours on Twitter," in International Conference on Social Informatics, 2016, pp. 185-205. [
DOI:10.1007/978-3-319-47880-7_12]
8. [8] K. Wu, S. Yang, and K. Q. Zhu, "False rumors detection on Sina Weibo by propagation structures," in 2015 IEEE 31st International Conference on Data Engineering, 2015, vol. 2015-May, pp. 651-662. [
DOI:10.1109/ICDE.2015.7113322] [
PMCID]
9. [9] S. Hamidian and M. Diab, "Rumor Identification and Belief Investigation on Twitter," in Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2016, pp. 3-8. [
DOI:10.18653/v1/W16-0403]
10. [10] Z. Zhao, P. Resnick, and Q. Mei, "Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts," in Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 1395-1405. [
DOI:10.1145/2736277.2741637] [
PMCID]
11. [11] E. Rahim zade, S. Soltanipour, "Analysis of the content of denied news and rumors in the print and online media of Iran on the eve of the 10th term of the Islamic Consultative Assembly," in the second national conference on media, communications and education Citizenship, Tehran, 2017, (In Persian).
12. [12] S. Zamani, M. Asadpour, and D. Moazzami, "Rumor detection for Persian Tweets," in 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 1532-1536. [
DOI:10.1109/IranianCEE.2017.7985287]
13. [13] M. Seifikar, S. Farzi, and S. D. Mahmoodabad, "Kermanshah Earthquake Event Tracking Through Persian Tweets," in 2018 9th International Symposium on Telecommunications (IST), 2018, pp. 424-428. [
DOI:10.1109/ISTEL.2018.8661059]
14. [14] A. Y. K. Chua and S. Banerjee, "Linguistic predictors of rumor veracity on the Internet," in Lecture Notes in Engineering and Computer Science, 2016, vol. 1, pp. 387-391.
15. [15] Q. Li, Q. Zhang, and L. Si, "eventai at semeval-2019 task 7: Rumor detection on social media by exploiting content, user credibility and propagation information," in Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 855-859. [
DOI:10.18653/v1/S19-2148]
16. [16] F. Xing and C. Guo, "Mining Semantic Information in Rumor Detection via a Deep Visual Perception Based Recurrent Neural Networks," in 2019 IEEE International Congress on Big Data (BigDataCongress), 2019, pp. 17-23. [
DOI:10.1109/BigDataCongress.2019.00016] [
PMCID]
17. [17] S. Vosoughi and D. Roy, "A human-machine collaborative system for identifying rumors on twitter," in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, pp. 47-50. [
DOI:10.1109/ICDMW.2015.221]
18. [18] A. Y. K. Chua and S. Banerjee, "Linguistic predictors of rumor veracity on the Internet," pp. 387-391, 2016.
19. [19] A. Zubiaga, M. Liakata, and R. Procter, "Exploiting context for rumour detection in social media," in International Conference on Social Informatics, 2017, pp. 109-123. [
DOI:10.1007/978-3-319-67217-5_8]
20. [20] S. Mahmoodabad, … S. F.-2018 9th I., and U. 2018, "Persian Rumor Detection on Twitter," ieeexplore.ieee.org. [
DOI:10.1109/ISTEL.2018.8661007]
21. [21] H. K. Thakur, A. Gupta, A. Bhardwaj, and D. Verma, "Rumor Detection on Twitter Using a Supervised Machine Learning Framework," Int. J. Inf. Retr. Res., vol. 8, no. 3, pp. 1-13, Jul. 2018. [
DOI:10.4018/IJIRR.2018070101]
22. [22] S. Vosoughi, D. Roy, and S. Aral, "The spread of true and false news online," Science (80-. )., vol. 359, no. 6380, pp. 1146-1151, 2018. [
DOI:10.1126/science.aap9559] [
PMID]
23. [23] A. Bondielli and F. Marcelloni, "A survey on fake news and rumour detection techniques," Inf. Sci. (Ny)., vol. 497, pp. 38-55, 2019. [
DOI:10.1016/j.ins.2019.05.035]
24. [24] G. W. Allport and L. Postman, The psychology of rumor. Henry Holt, 1947.
25. [25] H. Mohammadi and S. H. Khasteh, "A Machine Learning Approach to Persian Text Readability Assessment Using a Crowdsourced Dataset," Oct. 2018.
26. [26] M. M. Homayounpour and A. S. Panah, "Speech Acts Classification of Persian Language Texts Using Three Machine Leaming Methods," Int. J. Inf. Commun. Technol. Res., vol. 2, no. 1, pp. 65-71, 2010.
27. [27] Z. Jahanbakhsh-Nagadeh, M.-R. Feizi-Derakhshi, and A. Sharifi, "A Speech Act Classifier for Persian Texts and its Application in Identifying Rumors," J. Soft Comput. Inf. Technol. (JSCIT) Vol, vol. 9, no. 1, 2020.
28. [28] S. M. Mohammad and P. D. Turney, "Crowdsourcing a word-emotion association lexicon," in Computational Intelligence, 2013, vol. 29, no. 3, pp. 436-465. [
DOI:10.1111/j.1467-8640.2012.00460.x]
29. [29] H. Moradi, F. Ahmadi, and M.-R. Feizi-Derakhshi, "A Hybrid Approach for Persian Named Entity Recognition," Iran. J. Sci. Technol. Trans. A Sci., vol. 41, no. 1, pp. 215-222, 2017. [
DOI:10.1007/s40995-017-0209-x]
30. [30] V. Korde and C. N. Mahender, "Text classification and classifiers: A survey," Int. J. Artif. Intell. Appl., vol. 3, no. 2, p. 85, 2012. [
DOI:10.5121/ijaia.2012.3208]
31. [31] A.-R. Feizi-Derakhshi et al., "Sepehr_RumTel01," 2019.
32. [32] H. Jafary, M.-T. Taghavifard, P. Hanafizadeh, and A. Kazazi, "Native Quality Assessment Model of news sites (NEWSQUAL)," J. Soft Comput. Inf. Technol., vol. 7, no. 1, pp. 56-71, 2018, (In Persian).
33. [33] M. Wainberg, B. Alipanahi, and B. J. Frey, "Are random forests truly the best classifiers?," J. Mach. Learn. Res., vol. 17, no. 1, pp. 3837-3841, 2016. [
DOI:10.1186/s12864-016-3121-4] [
PMID] [
PMCID]
34. [34] J. Wainer, "Comparison of 14 different families of classification algorithms on 115 binary datasets," arXiv Prepr. arXiv1606.00930, 2016.
35. [35] A. J. Wyner, M. Olson, J. Bleich, and D. Mease, "Explaining the success of adaboost and random forests as interpolating classifiers," J. Mach. Learn. Res., vol. 18, no. 1, pp. 1558-1590, 2017.
36. [36] L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001. [
DOI:10.1023/A:1010933404324]
37. [37] Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 904, 1995, pp. 23-37. [
DOI:10.1007/3-540-59119-2_166]
38. [38] C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995. [
DOI:10.1007/BF00994018]
39. [39] N. El Aboudi and L. Benhlima, "Review on wrapper feature selection approaches," in Proceedings - 2016 International Conference on Engineering and MIS, ICEMIS 2016, 2016. [
DOI:10.1109/ICEMIS.2016.7745366]