1. [1] S. Eskandari and M. Javidi, "Online streaming feature selection using rough sets," International Journal of Approximate Reasoning, vol. 69, pp. 35-57, 2016. [
DOI:10.1016/j.ijar.2015.11.006]
2. [2] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of machine learning research, vol. 3, pp. 1157-1182, 2003.
3. [3] S. Eskandari and M. Javidi, "Streamwise feature selection: a rough set method," International Journal of Machine Learning and Cybernetics, vol. 9, no. 4, pp. 667-676, 2016. [
DOI:10.1007/s13042-016-0595-y]
4. [4] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial intelligence, vol. 97, no. 1-2, pp. 273-324, 1997. [
DOI:10.1016/S0004-3702(97)00043-X]
5. [5] Y. Saeys, I. Iñaki , and P. Larrañaga, "A review of feature selection techniques in bioinformatics," bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. [
DOI:10.1093/bioinformatics/btm344] [
PMID]
6. [6] V. Bolón-Canedo, S. Noelia , and A. Amparo, "A review of feature selection methods on synthetic data," Knowledge and information systems, vol. 34, no. 3, pp. 483-519, 2013. [
DOI:10.1007/s10115-012-0487-8]
7. [7] J.Wang, Zh. Peilin , H. CH Steven , and J. Rong , "Online feature selection and its applications," IEEE Transactions on Knowledge and Data Engineering , vol. 29, no. 3, pp. 698-710, 2014. [
DOI:10.1109/TKDE.2013.32]
8. [8] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, "Online feature selection with streaming features," IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 3, pp. 1178-1192, 2013. [
DOI:10.1109/TPAMI.2012.197] [
PMID]
9. [9] S. Perkins and J. Theiler, "Online feature selection using grafting," in Proceedings of the 20th International Conference on Machine Learning, 2003, pp. 592-599.
10. [10] K. Glocer, D. Eads, and J. Theiler, "Online feature selection for pixel classification," in Proceedings of the 22nd international conference on Machine learning, pp. 249-256.
11. [11] J. Zhou, D. P. Foster, R. A Stine, and L. H Ungar, "Streamwise feature selection," Journal of Machine Learning Research, vol. 7, pp. 1861-1885, 2006.
12. [12] M. Javidi and S. Eskandari, "Online streaming feature selection: a minimum redundancy, maximum significance approach," Pattern Analysis and Applications, pp. 1-15, 2018. [
DOI:10.1007/s10044-018-0690-7]
13. [13] M. Rahmaninia and P. Moradi, "OSFSMI: Online stream feature selection method based on mutual information," Applied Soft Computing, vol. 68, pp. 733-746, 2018. [
DOI:10.1016/j.asoc.2017.08.034]
14. [14] S. Eskandari and E. Akbas, "Supervised Infinite Feature Selection," CoRR arXiv, 2017.
15. [15] S. Perkins, K. Lacker, and J. Theiler, "Grafting: Fast, incremental feature selection by gradient descent in function space," Journal of machine learning research, vol. 3, pp. 1333-1356, 2003.
16. [16] P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern recognition letters, vol. 15, no. 11, pp. 1119-1125, 1994. [
DOI:10.1016/0167-8655(94)90127-9]
17. [17] L. H Ungar, J. Zhou, D. P Foster, and B. A Stine, "Streaming Feature Selection using IIC," in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005.
18. [18] J. Zhou, D. Foster, R. Stine, and L. Ungar, "Streaming feature selection using alpha-investing," in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, 2005, pp. 384-393. [
DOI:10.1145/1081870.1081914] [
PMID]
19. [19] P. S Dhillon, D. Foster, and L. Ungar, "Feature selection using multiple streams," in Proceedings of International Workshop on Artificial Intelligence and Statistics, 2010.
20. [20] G. Roffo, S. Melzi, and M. Cristani, "Infinite feature selection," in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4202-4210. [
DOI:10.1109/ICCV.2015.478]
21. [21] Isabelle Guyon. (2003) http://clopinet.com/isabelle/Projects/NIPS2003/.
22. [22] M. Everingham, L. Van Gool, Ch. Williams, J. Winn, and A. Zisserman, The pascal visual object classes (voc) challenge, 2007.
23. [23] M. Everingham, L. Van Gool, Ch. K. Williams, J. Winn, and A. Zisserman, The pascal visual object classes (voc) challenge, 2012.
24. [24] S. Maldonado and R. Weber, "A wrapper method for feature selection using support vector machines," Information Sciences, vol. 179, no. 13, pp. 2208-2217, 2009. [
DOI:10.1016/j.ins.2009.02.014]
25. [25] R. Battiti, "Using mutual information for selecting features in supervised neural net learning," IEEE Transactions on neural networks, vol. 5, no. 4, pp. 537-550, 1994. [
DOI:10.1109/72.298224] [
PMID]
26. [26] G. Brown, A. Pocock, M. Zhao, and M. Luján, "Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection," The Journal of Machine Learning Research, vol. 13, pp. 27-66, 2012.
27. [27] M. Dash and H. Liu, "Consistency-based search in feature selection," Artificial intelligence, vol. 151, no. 1-2, pp. 155-176, 2003. [
DOI:10.1016/S0004-3702(03)00079-1]
28. [28] P. Zhao and B. Yu, "On model selection consistency of Lasso," Journal of Machine learning research, no. 7, pp. 2541-2563, 2006.