1. [1] Y. Hou, Z. Li, P. Wang, and W. Li, "Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks," IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 3, pp. 807-811, 2018. [
DOI:10.1109/TCSVT.2016.2628339]
2. [2] C. Ding and D. Tao, "Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 1002-1014, 2018. [
DOI:10.1109/TPAMI.2017.2700390] [
PMID]
3. [3] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, 2018. [
DOI:10.1109/TPAMI.2017.2699184] [
PMID]
4. [4] G. Lin, Q. Wu, L. Qiu, and X. Huang, "Image super-resolution using a dilated convolutional neural network," Neurocomputing, vol. 275, pp. 1219-1230, 2018. [
DOI:10.1016/j.neucom.2017.09.062]
5. [5] S. Yu, S. Jia, C. X.- Neurocomputing, and undefined 2017, "Convolutional neural networks for hyperspectral image classification," Elsevier, vol. 219, pp. 88-98, 2016. [
DOI:10.1016/j.neucom.2016.09.010]
6. [6] J. Yim and K. A. Sohn, "Enhancing the Performance of Convolutional Neural Networks on Quality Degraded Datasets," DICTA 2017 - 2017 Int. Conf. Digit. Image Comput. Tech. Appl., vol. 2017-Decem, pp. 1-8, 2017. [
DOI:10.1109/DICTA.2017.8227427]
7. [7] Z. Zhang, D. Han, J. Dezert, and Y. Yang, "A new adaptive switching median filter for impulse noise reduction with pre-detection based on evidential reasoning," Signal Processing, vol. 147, pp. 173-189, 2018. [
DOI:10.1016/j.sigpro.2018.01.027]
8. [8] K. H. Jin and J. C. Ye, "Sparse and low-rank decomposition of a hankel structured matrix for impulse noise removal," IEEE Trans. Image Process., vol. 27, no. 3, pp. 1448-1461, 2018. [
DOI:10.1109/TIP.2017.2771471] [
PMID]
9. [9] I. Turkmen, "The ANN based detector to remove random-valued impulse noise in images," J. Vis. Commun. Image Represent., vol. 34, pp. 28-36, 2016. [
DOI:10.1016/j.jvcir.2015.10.011]
10. [10] S. Liang, S. Lu, J. Chang, and C. C. T. Lin, "A Novel Two-Stage Impulse Noise Removal Technique Based on Neural Networks and Fuzzy Decision," Ieeexplore.Ieee.Org, vol. 16, no. 4, pp. 863-873, 2008. [
DOI:10.1109/TFUZZ.2008.917297]
11. [11] V. K. Alilou and F. Yaghmaee, "Non-texture image inpainting using histogram of oriented gradients," J. Vis. Commun. Image Represent., vol. 48, pp. 43-53, 2017. [
DOI:10.1016/j.jvcir.2017.06.003]
12. [12] A. Javaheri, H. Zayyani, and F. Marvasti, "Sparse recovery of missing image samples using a convex similarity index," Signal Processing, vol. 152, pp. 90-103, 2018. [
DOI:10.1016/j.sigpro.2018.05.022]
13. [13] D. Shabtay, N. Raviv, and Y. Moshe, "Video packet loss concealment detection based on image content," Eur. Signal Process. Conf., 2008.
14. [14] G. Nikolakopoulos, P. Stavrou, D. Tsitsipis, D. Kandris, A. Tzes, and T. Theocharis, "A dual scheme for compression and restoration of sequentially transmitted images over Wireless Sensor Networks," Ad Hoc Networks, vol. 11, no. 1, pp. 410-426, 2013. [
DOI:10.1016/j.adhoc.2012.07.003]
15. [15] R. G. Everitt and R. H. Glendinning, "A statistical approach to the problem of restoring damaged and contaminated images," Pattern Recognit., vol. 42, no. 1, pp. 115-125, 2009. [
DOI:10.1016/j.patcog.2008.06.009]
16. [16] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu, "Wavelet frame based blind image inpainting," Appl. Comput. Harmon. Anal., vol. 32, no. 2, pp. 268-279, 2012. [
DOI:10.1016/j.acha.2011.06.001]
17. [17] H. Li, W. Luo, and J. Huang, "Localization of Diffusion-Based Inpainting in Digital Images," IEEE Trans. Inf. Forensics Secur., vol. 12, no. 12, pp. 3050-3064, 2017. [
DOI:10.1109/TIFS.2017.2730822]
18. [18] C. Qin, C. C. Chang, and K. N. Chen, "Adaptive self-recovery for tampered images based on VQ indexing and inpainting," Signal Processing, vol. 93, no. 4, pp. 933-946, 2013. [
DOI:10.1016/j.sigpro.2012.11.013]
19. [19] K. Audhkhasi, O. Osoba, and B. Kosko, "Noise-enhanced convolutional neural networks," Neural Networks, vol. 78, pp. 15-23, 2016. [
DOI:10.1016/j.neunet.2015.09.014] [
PMID]
20. [20] I. F. Jafar, R. A. Alna'Mneh, and K. A. Darabkh, "Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise," IEEE Trans. Image Process., vol. 22, no. 3, pp. 1223-1232, 2013. [
DOI:10.1109/TIP.2012.2228496] [
PMID]
21. [21] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. H. PremChand, "Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter," IEEE Signal Process. Lett., vol. 18, no. 5, pp. 287-290, 2011. [
DOI:10.1109/LSP.2011.2122333]
22. [22] C. Guillemot and O. Le Meur, "Image Inpainting," IEEE Signal Process. Mag., no. JANUARY, pp. 127-144, 2014. [
DOI:10.1109/MSP.2013.2273004]
23. [23] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen, "Recent advances in convolutional neural networks," Pattern Recognit., vol. 77, pp. 354-377, 2018. [
DOI:10.1016/j.patcog.2017.10.013]
24. [24] Y. Liu, Y. M. Zhang, X. Y. Zhang, and C. L. Liu, "Adaptive spatial pooling for image classification," Pattern Recognit., vol. 55, pp. 58-67, 2016. [
DOI:10.1016/j.patcog.2016.01.030]
25. [25] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2014.
26. [26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015. [
DOI:10.1007/s11263-015-0816-y]
27. [27] Y. Wang, A. Szlam, and G. Lerman, "Robust Locally Linear Analysis with Applications to Image Denoising and Blind Inpainting," SIAM J. Imaging Sci., vol. 6, no. 1, pp. 526-562, 2013. [
DOI:10.1137/110843642]
28. [28] M. Yan, "Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting," SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1227-1245, 2013. [
DOI:10.1137/12087178X]
29. [29] J. Salmon, Z. Harmany, C. A. Deledalle, and R. Willett, "Poisson noise reduction with non-local PCA," J. Math. Imaging Vis., vol. 48, no. 2, pp. 279-294, 2014. [
DOI:10.1007/s10851-013-0435-6]