URL: http://jsdp.rcisp.ac.ir/article-1-700-fa.html
یکی از روش های بهبود صحت طبقه بندی داده ها، استفاده از چند طبقه بند مختلف و سپس ترکیب نتایج خروجی آن هاست که اغلب تحت عنوان ترکیب طبقه بندها خوانده می شود. پارامترهای مختلفی بر کارایی سیستم ترکیب طبقه بندها تاثیر می گذارند که از آن جمله می توان به میزان گوناگونی بین طبقه بندهای پایه ی سیستم اشاره کرد.در این مقاله تاثیر ایجاد گوناگونی حاصل از یادگیری همبستگی منفی را بر کارایی ترکیب طبقه بندهای عصبی مورد بررسی قرار داده ایم. این تحقیق تاثیر یادگیری همبستگی منفی را در دو روش ترکیبی کلیشه تصمیم و تعمیم انباره ای بررسی کرده است، که روش اول روشی بدون یادگیری و روش دوم روشی مبتنی بر یادگیری در بخش ترکیب است. استفاده از یادگیری همبستگی منفی برای ایجاد گوناگونی در طبقه بندهای پایه سیستم ترکیبی، صحت طبقه بندی را در هر دو روش مورد آزمون بهبود داده است. ایده پیشنهادی مقاله از نقطه نظر دیگری هم قابل ارائه است. تا کنون از روش های میانگین گیری و رای اکثریت برای ترکیب شبکه هایی با همبستگی منفی استفاده می شده است. نتایج این تحقیق نشان داد که کلیشه تصمیم و تعمیم انباره ای روش های کاراتری برای ترکیب شبکه های حاصل از یادگیری همبستگی منفی هستند. آزمایشات روی پنج مجموعه داده ی آزمون طبقه بندی از بانک داده UCI و ELENA نشان داد که به کارگیری ایده پیشنهادی کارایی ساختار ترکیب طبقه بندهای عصبی را به طور قابل ملاحظه ای افزایش داده است.