Volume 21, Issue 2 (10-2024)                   JSDP 2024, 21(2): 43-54 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mihandoost S. Atrial Fibrillation Classification Using PiCA-ESN Algorithm and Stockwell Transform. JSDP 2024; 21 (2) : 4
URL: http://jsdp.rcisp.ac.ir/article-1-1374-en.html
Urmia University of Technology
Abstract:   (764 Views)
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia characterized by irregular heartbeats, often without noticeable symptoms in patients. Diagnosing AF is challenging for cardiologists, requiring advanced methods for accurate identification using electrocardiogram (ECG) signals. Automated AF diagnosis can significantly aid cardiologists in prompt identification, potentially reducing the risks associated with acute heart disease and stroke. Various non-invasive techniques based on ECG signal processing have been suggested to better understand the mechanisms by analyzing the atrial fibrillatory waves (f-waves). Different signal processing methods for f-wave extraction have been explored, which may be classified as follows: average beat subtraction and its advanced variants, QT-interval interpolation, principal and independent component analysis, nonlinear adaptive filtering using an echo state network, diffusion geometry, and extended Kalman filtering. This study aims to extract the f-wave from the ECG signal using the PiCA-ESN algorithm, which yields better results compared to other methods. Additionally, the f-wave's time-frequency behavior was analyzed using the Stockwell transform to differentiate between terminated and non-terminated AF states for the first time in this study. First, the PiCA-ESN algorithm facilitated the extraction of the f-wave from the ECG signal. Subsequently, the Stockwell transform was used to compute the time-frequency maps of the extracted f-wave. Various features were derived from the amplitude of the Stockwell transform and utilized in conjunction with three classifiers: MLP, SVM, and AdaBoost. The findings reveal that the proposed method outperforms selected methodologies from the Physionet Challenge 2004, achieving an impressive 100% accuracy in both tasks. Additionally, an experiment was conducted to assess the robustness of the proposed features across consecutive signal segments, validating their stability during signal analysis.
Article number: 4
Full-Text [PDF 742 kb]   (212 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2023/04/7 | Accepted: 2024/08/22 | Published: 2024/11/4 | ePublished: 2024/11/4

References
1. S. S. Chugh, J. L. Blackshear, W. K. Shen, S. C. Hammill, S. C, and B. J. Gersh, "Epidemiology and natural history of atrial fibrillation: clinical implications", Journal of the American College of Cardiology, vol. 37, no. 2, pp. 371-378, February 2001. [DOI:10.1016/S0735-1097(00)01107-4]
2. W. M. Feinberg, E. S. Cornell, S. D. Nightingale, L. A. Pearce, R. P. Tracy, R. G. Hart, and E. G. Bovill, "Relationship between prothrombin activation fragment F1. 2 and international normalized ratio in patients with atrial fibrillation", Stroke, vol. 28, no. 6, pp. 1101-1106, 1997. [DOI:10.1161/01.STR.28.6.1101]
3. S. Mihandoost, L. Sörnmo, M. Doyen, and J. Oster, "A comparative study of the performance of methods for f-wave extraction", Physiological Measurement, vol. 43, no. 10, pp. 105006, 2022. [DOI:10.1088/1361-6579/ac96ca]
4. F. Nilsson, M. Stridh, A. Bollmann, and L. Sornmo, "Predicting spontaneous termination of atrial fibrillation with time-frequency information", Computers in Cardiology, pp. 657-660, 2004. [DOI:10.1109/CIC.2004.1443024]
5. S. S. Chugh, J. L. Blackshear, W. K. Shen, S. C. Hammill, S. C, and B. J. Gersh, "Epidemiology and natural history of atrial fibrillation: clinical implications", Journal of the American College of Cardiology, vol. 37, no. 2, pp. 371-378, 2001. [DOI:10.1016/S0735-1097(00)01107-4]
6. W. M. Feinberg, E. S. Cornell, S. D. Nightingale, L. A. Pearce, R. P. Tracy, R. G. Hart, and E. G. Bovill, "Relationship between prothrombin activation fragment F1. 2 and international normalized ratio in patients with atrial fibrillation", Stroke, vol. 28, no. 6, pp. 1101-1106, 1997. [DOI:10.1161/01.STR.28.6.1101]
7. P. Bonizzi, M. Stridh, L. Sörnmo L, and O. Meste, "Ventricular activity residual reduction in remainder ECGs based on short-term autoregressive model interpolation", Annual Computers in Cardiology Conference (CinC), vol. 36, pp. 813-816, 2009.
8. J. Slocum, A. Sahakian, and S. Swiryn, "Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity", Journal of electrocardiology, vol. 25, no. 1, pp. 1-8, 1992. [DOI:10.1016/0022-0736(92)90123-H]
9. M. Stridh, and L. Sörnmo, "Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation", IEEE Transactions on Biomedical Engineering, vol. 48, no. 1, pp. 105-111, 2001. [DOI:10.1109/10.900266]
10. J. Behar, J. Oster, and G. D. Clifford, "Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data", Physiological measurement, vol. 35, no. 8, pp.1569-1589, 2014. [DOI:10.1088/0967-3334/35/8/1569]
11. H. Jaeger, "The "echo state" approach to analysing and training recurrent neural networks-with an erratum note", Bonn, Germany: German National Research Center for Information Technology, GMD Technical Report, vol. 148, no. 34, pp. 13, 2001.
12. A. Petrėnas, V. Marozas, L. Sörnmo, and A. Lukosevicius, "An echo state neural network for QRST cancellation during atrial fibrillation", IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp, 2950-2957, 2012. [DOI:10.1109/TBME.2012.2212895]
13. F. Castells, C. Mora, J. J. Rieta, D. Moratal-Pérez, and J. Millet, "Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts", Medical and biological Engineering and Computing, vol. 43, no. 5, pp. 557-560, 2005. [DOI:10.1007/BF02351028]
14. R. Alcaraz, and J. J. Rieta, "Adaptive singular value cancellation of ventricular activity in single-lead atrial fibrillation electrocardiograms", Physiological measurement, vol. 29, no. 12, pp. 1351-1369, 2008. [DOI:10.1088/0967-3334/29/12/001]
15. R. Llinares, and J. Igual, "Application of constrained independent component analysis algorithms in electrocardiogram arrhythmias", Artif Intell Med, vol. 47, no. 2, pp, 121-133, 2009. [DOI:10.1016/j.artmed.2009.05.006]
16. J. Malik, N. Reed, C. L. Wang, and H. T. Wu, "Single-lead f-wave extraction using diffusion geometry", Physiological measurement, vol. 38, no. 7, pp. 1310-1334, 2017. [DOI:10.1088/1361-6579/aa707c]
17. [E. K. Roonizi, and R. Sassi, "An extended Bayesian framework for atrial and ventricular activity separation in atrial fibrillation", IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 6, pp. 1573-1580, 2016. [DOI:10.1109/JBHI.2016.2625338]
18. P. Langley, J. P. Bourke, and A. Murray, "Frequency analysis of atrial fibrillation", In Computers in Cardiology IEEE, pp. 65-68, 2000. [DOI:10.1109/CIC.2000.898456]
19. M. Stridh, and L. Sornmo, "Time-frequency characterization of atrial arrhythmias using principal decomposition", In 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.2, pp. 1808-1811, 2001. [DOI:10.1109/IEMBS.2001.1020572]
20. M. Stridh, L. Sornmo, C. J. Meurling, and S. B. Olsson, "Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis", IEEE Transactions on Biomedical Engineering, vol. 5, pp.100-114, 2004. [DOI:10.1109/TBME.2003.820331]
21. V. Zarzoso, D G. Latcu, A R Hidalgo-Muñoz, M. Meo, O. Meste, I. Popescu, and N. Saoudi, "Non-invasive prediction of catheter ablation outcome in persistent atrial fibrillation by fibrillatory wave amplitude computation in multiple electrocardiogram leads", Archives of cardiovascular diseases, vol. 109, no. 12, pp. 679-688, 2016. [DOI:10.1016/j.acvd.2016.03.002]
22. R.K. Tripathy, M.R. Paternina, J.G. Arrieta, and P. Pattanaik, "Automated detection of atrial fibrillation ecg signals using two stage vmd and atrial fibrillation diagnosis index", Journal of Mechanics in Medicine and Biology, vol. 17, no. 7, pp. 1740044, 2017 [DOI:10.1142/S0219519417400449]
23. R. J. Martis, U. R. Acharya, H. Prasad, C. K .Chua, and C. M. Lim, "Automated detectionof atrial fibrillation using bayesian paradigm", Knowledge-Based Systems, vol. 54, pp. 269-275, 2017. [DOI:10.1016/j.knosys.2013.09.016]
24. A. Nguyen, S. Ansari, M. Hooshmand, K. Lin, H. Ghanbari, J. Gryak, and K. Najarian, "Comparative study on heart rate variability analysis for atrial fibrillation detection in short single-lead ecg recordings", In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 526-529, 2018. [DOI:10.1109/EMBC.2018.8512345]
25. S. Cerutti, L. Mainardi, A. Porta, and A. Bianchi, "Analysis of the dynamics of RR interval series for the detection of atrial fibrillation episodes", Computers in Cardiology IEEE, pp. 77-80, 1997. [DOI:10.1109/CIC.1997.647834]
26. T. Radhakrishnan, J. Karhade, S. K. Ghosh, P. R. Muduli, R. K. Tripathy, and U. R. Acharya, " AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals", Computers in Biology and Medicine, vol. 137, pp.104783, 2021. [DOI:10.1016/j.compbiomed.2021.104783]
27. R. G. Stockwell, L. Mansinha, and R. Lowe, "Localization of the complex spectrum: The S-transform", IEEE Transaction on Signal Processing, vol. 44, pp. 998-100, 1996. [DOI:10.1109/78.492555]
28. [GB. Moody, "Spontaneous Termination of Atrial Fibrillation" PhysioNet and Computers in Cardiology 2004, Apr. 11, 2004. [Online]. Available: https://physionet.org/content/aftdb/1.0.0/. [Accessed: Sept. 10, 2024].
29. G. Moody, "Spontaneous termination of atrial fibrillation: a challenge from physionet and computers in cardiology 2004", Computers in Cardiology, pp. 101-104, 2004. [DOI:10.1109/CIC.2004.1442881]
30. R. Sameni, C. Jutten, and M. B. Shamsollahi, "Multichannel electrocardiogram decomposition using periodic component analysis", IEEE Transactions on Biomedical Engineering, vol. 55, no. 8, pp. 1935-1940, 2008. [DOI:10.1109/TBME.2008.919714]
31. J. Pan, and W. J. Tompkins, "A real-time QRS detection algorithm", IEEE Transactions on Biomedical Engineering, vol. 32, pp. 230-236, 1985. [DOI:10.1109/TBME.1985.325532]
32. A. Petrėnas, and M. Vaidotas, Atrial fibrillation from an engineering perspective, Edited by Leif Sörnmo, Berlin: Springer, 2018.
33. H. Hazeri, P. Zarjam, and G. Azemi, "Classification of normal/abnormal PCG recordings using a time-frequency approach", Analog Integrated Circuits and Signal Processing, vol. 109, no. 2 ,pp. 459-465, 2021. [DOI:10.1007/s10470-021-01867-2]
34. M. Azimi Far, S.Nejatian, H. Parvin, K. Bagheri Fard, and V. Rezaei, "Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines", Signal and Data Processing, vol. 19, no. 3, pp. 65-86, 2022. [DOI:10.52547/jsdp.19.3.65]
35. عظیمی‌فر، مریم، نجاتیان، پروین، باقری فرد، کرم الله، رضایی وحیده، «پیش‌بینی آریتمی قلبی در سیگنال ECG با به‌کارگیری مجمعی از ماشین‌های بردار پشتیبان چندهسته‌ای بهینه»٬ پردازش علائم و داده‌ها، دورة ۱۹، شمارة ۳، صفحات 65-86، ۱۴۰۱.
36. S. Petrutiu, A. V. Sahakian, and J. Ng, S. Swiryn, "Analysis of the surface electrocardiogram to predict termination of atrial fibrillation: the 2004 computers in cardiology/physionet challenge", In Computers in Cardiology, 2004, pp. 105-108. [DOI:10.1109/CIC.2004.1442882]
37. D. Hayn, K. Edegger, D. Scherr, P. Lercher, B. Rotman, W. Klein, and G. Schreier, "Automated prediction of spontaneous termination of atrial fibrillation from electrocardiograms", In Computers in Cardiology 2004, 2004, pp. 117-120. [DOI:10.1109/CIC.2004.1442885]
38. F. Cantini, F. Conforti, M. Varanini, F. Chiarugi, and G. Vrouchos, "Predicting the end of an atrial fibrillation episode: the physionet challenge", In Computers in Cardiology 2004, 2004, pp. 121-124. [DOI:10.1109/CIC.2004.1442886]
39. M. Lemay, Z. Ihara, J. M. Vesin, and L. Kappenberger. "Computers in cardiology/physionet challenge 2004: AF classification based on clinical features", In Computers in Cardiology 2004, pp. 669-672, 2004. [DOI:10.1109/CIC.2004.1443027]
40. B. Logan, and J. Healey, "Detection of spontaneous termination of atrial fibrillation", In Computers in Cardiology 2004, pp. 653-656, 2004. [DOI:10.1109/CIC.2004.1443023]
41. Q. Xi, and S. Shkurovich, "Prediction of spontaneous termination of atrial fibrillation in surface ECG by frequency analysis", In Computers in Cardiology 2004, pp. 113-116, 2004. [DOI:10.1109/CIC.2004.1442884]
42. L. Liu, F. Liu, X. Ren, Y. Li, B. Han, L. Zhang, S. Wei, "Predicting spontaneous termination of atrial fibrillation based on dual path network and feature selection", Biomedical Signal Processing and Control, 88, pp. 105606, 2024. [DOI:10.1016/j.bspc.2023.105606]
43. N. Ganapathy, D. Baumgärtel, and T. M. Deserno, "Automatic detection of atrial fibrillation in ECG using co-occurrence patterns of dynamic symbol assignment and machine learning". Sensors, vol. 21, no. 10, pp. 3542, 2021. [DOI:10.3390/s21103542]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Signal and Data Processing