1. [1] Z. Rajabi, M. valavi, and M. Hourali, "Sentiment analysis methods in Persian text: A survey," Signal Data Process., vol. 19, no. 2, pp. 107-132, 2022, doi: 10.52547/jsdp.19.2.107. [
DOI:10.52547/jsdp.19.2.107]
2. [2]"https://daneshyari.com/isi/articles/sentiment_anal."
3. [3] S. Behdenna, F. Barigou, and G. Belalem, "EAI Endorsed Transactions Document Level Sentiment Analysis : A survey," vol. 4, no. 1, pp. 1-8, 2017. [
DOI:10.4108/eai.14-3-2018.154339]
4. [4] V. S. Jagtap and K. Pawar, "Analysis of different approaches to Sentence-Level Sentiment Classification," Int. J. Sci. Eng. Technol., vol. 2, no. 3, pp. 164-170, 2013, [Online]. Available: http://ijset.com/ijset/ publication/v2s3/paper11.pdf
5. [5] H. Wan, Y. Yang, J. Du, Y. Liu, K. Qi, and J. Z. Pan, "Target-aspect-sentiment joint detection for aspect-based sentiment analysis," AAAI 2020 - 34th AAAI Conf. Artif. Intell., pp. 9122-9129, 2020, doi: 10.1609/aaai.v34i05.6447. [
DOI:10.1609/aaai.v34i05.6447]
6. [6] Y. Kim, "Convolutional neural networks for sentence classification," EMNLP 2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1746-1751, 2014, doi: 10.3115/v1/d14-1181. [
DOI:10.3115/v1/D14-1181]
7. [7] A. K. Sharma, S. Chaurasia, and D. K. Srivastava, "Sentimental Short Sentences Classification by Using CNN Deep Learning Model with Fine Tuned Word2Vec," Procedia Comput. Sci., vol. 167, no. 2019, pp. 1139-1147, 2020, doi: 10.1016/j.procs.2020.03.416. [
DOI:10.1016/j.procs.2020.03.416]
8. [8] S. Ramaswamy and N. DeClerck, "Customer perception analysis using deep learning and NLP," Procedia Comput. Sci., vol. 140, pp. 170-178, 2018, doi: 10.1016/j.procs.2018-.10.326. [
DOI:10.1016/j.procs.2018.10.326]
9. [9] H. Sadr, M. mohsen Pedram, and M. Teshnehlab, "Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text," Signal Data Process., vol. 19, no. 1, pp. 19-38, 2022, doi: 10.52547/jsdp.19.1.19. [
DOI:10.52547/jsdp.19.1.19]
10. [10] Y. Wang, M. Huang, L. Zhao, and X. Zhu, "Attention-based LSTM for aspect-level sentiment classification," EMNLP 2016 - Conf. Empir. Methods Nat. Lang. Process. Proc., pp. 606-615, 2016, doi: 10.18653/v1/d16-1058. [
DOI:10.18653/v1/D16-1058]
11. [11] T. Chen, R. Xu, Y. He, and X. Wang, "Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN," Expert Syst. Appl., vol. 72, pp. 221-230, 2017, doi: 10.1016/j.eswa.2016.10.065. [
DOI:10.1016/j.eswa.2016.10.065]
12. [12] D. Tang, B. Qin, X. Feng, and T. Liu, "Effective LSTMs for target-dependent sentiment classification," COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap., pp. 3298-3307, 2016.
13. [13] Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, "Targeted Sentiment Classification with Attentional Encoder Network," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11730 LNCS, pp. 93-103, 2019, doi: 10.1007/978-3-030-30490-4_9. [
DOI:10.1007/978-3-030-30490-4_9]
14. [14] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos, "SemEval-2015 Task 12: Aspect Based Sentiment Analysis," SemEval 2015 - 9th Int. Work. Semant. Eval. co-located with 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. NAACL-HLT 2015 - Proc., pp. 486-495, 2015, doi: 10.18653/v1/s15-2082. [
DOI:10.18653/v1/S15-2082]
15. [15] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, "Adaptive Recursive Neural Network for target-dependent Twitter sentiment classification," 52nd Annu. Meet. Assoc. Comput. Linguist. ACL 2014 - Proc. Conf., vol. 2, pp. 49-54, 2014, doi: 10.3115/v1/p14-2009. [
DOI:10.3115/v1/P14-2009] [
]
16. [16] T. S. Ataei, K. Darvishi, S. Javdan, B. Minaei-Bidgoli, and S. Eetemadi, "Pars-ABSA: an Aspect-based Sentiment Analysis dataset for Persian," pp. 1-6, 2019.
17. [17] G. Pang, K. Lu, X. Zhu, J. He, Z. Mo, and Z. Peng, "Aspect-Level Sentiment Analysis Approach via BERT and Aspect Feature Location Model," vol. 2021, 2021. [
DOI:10.1155/2021/5534615]
18. [18] Z. Sun, L. Bing, W. Yang, and P. Chen, "Recurrent Attention Network on Memory for Aspect Sentiment Analysis," pp. 452-461, 2017.
19. [19] R. Wang, "Interactive Attention Encoder Network with Local Context Features for Aspect-Level Sentiment Analysis," no. Iccc, pp. 571-576, 2020, doi: 10.1109/ICCC49849. 2020.9238924. [
DOI:10.1109/ICCC49849.2020.9238924]
20. [20] F. Fan, Y. Feng, and D. Zhao, "Multi-grained Attention Network for Aspect-Level Sentiment Classification," pp. 3433-3442, 2018. [
DOI:10.18653/v1/D18-1380]