Volume 13, Issue 3 (12-2016)                   JSDP 2016, 13(3): 155-169 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fayyazi H, Dehghani H, Hosseini M. Sparse unmixing of hyper-spectral images using a pruned spectral library. JSDP. 2016; 13 (3) :155-169
URL: http://jsdp.rcisp.ac.ir/article-1-128-en.html
MSc Malek-Ashtar University of Technology
Abstract:   (1569 Views)

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated spectra, the sparse unmixing approach leads to non-admissible solutions. On the other hand, most of the proposed solutions are not noise-resistant and do not reach to a sufficiently high sparse solution. In this paper, with the purpose of overcoming the problems above, at first the spectral library will be pruned based on the spectral information of the image,clustering and classification techniques. Then a genetic algorithm  will be used for sparse unmixing. The experimental results on the simulated and real images show that the proposed method gives good results in noisy images. 

Full-Text [PDF 4035 kb]   (651 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2013/06/23 | Accepted: 2016/07/26 | Published: 2017/04/23 | ePublished: 2017/04/23

References
1. [1] R. A. Schowengerdt, Remote sensing: models and methods for image processing. Academic press, 2006.
2. [2] C. HEINZD, "FullyConstrainedLeastSquares LinearMixture Analysisfor Material Quantific-ationin Hyperspectral Imagery," IEEE Transac-tionson Geoscience and Remote Sensing, vol. 39, no. 3, p. 529, 2001.
3. [3] A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote sensing of environment, vol. 113, pp. S110-S122, 2009. [DOI:10.1016/j.rse.2007.07.028]
4. [4] J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354-379, 2012. [DOI:10.1109/JSTARS.2012.2194696]
5. [5] P. E. Dennison and D. A. Roberts, "Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE," Remote sensing of environment, vol. 87, no. 2, pp. 123-135, 2003. [DOI:10.1016/S0034-4257(03)00135-4]
6. [6] J. Settle, "On the effect of variable endmember spectra in the linear mixture model," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 2, pp. 389-396, 2006. [DOI:10.1109/TGRS.2005.860983]
7. [7] B. Somers, G. P. Asner, L. Tits, and P. Coppin, "Endmember variability in spectral mixture analysis: A review," Remote Sensing of Environment, vol. 115, no. 7, pp. 1603-1616, 2011. [DOI:10.1016/j.rse.2011.03.003]
8. [8] L. Wang and X. Jia, "Integration of soft and hard classifications using extended support vector machines," IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 3, pp. 543-547, 2009. [DOI:10.1109/LGRS.2009.2020924]
9. [9] M.-D. Iordache, "A sparse regression approach to hyperspectral unmixing," INSTITUTO SUPERIOR TÉCNICO, 2011.
10. [10] J. W. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," 1993.
11. [11] M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 1999, pp. 266-275: International Society for Optics and Photonics. [DOI:10.1117/12.366289]
12. [12] R. Neville, "Automatic endmember extraction from hyperspectral data for mineral exploration," in International Airborne Remote Sensing Conference and Exhibition, 4 th/21 st Canadian Symposium on Remote Sensing, Ottawa, Canada, 1999. [DOI:10.4095/219526]
13. [13] J. M. Nascimento and J. M. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE transactions on Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898-910, 2005. [DOI:10.1109/TGRS.2005.844293]
14. [14] C.-I. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2804-2819, 2006. [DOI:10.1109/TGRS.2006.881803]
15. [15] J. H. Gruninger, A. J. Ratkowski, and M. L. Hoke, "The sequential maximum angle convex cone (SMACC) endmember model," in Defense and Security, 2004, pp. 1-14: International Society for Optics and Photonics.
16. [16] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4177-4193, 2011. [DOI:10.1109/TGRS.2011.2141672]
17. [17] M. Möller, E. Esser, S. Osher, G. Sapiro, and J. Xin, "A convex model for matrix factorization and dimensionality reduction on physical space and its application to blind hyperspectral unmixing," DTIC Document2010. [DOI:10.21236/ADA540658]
18. [18] J. H. Bowles, P. J. Palmadesso, J. A. Antoniades, M. M. Baumback, and L. J. Rickard, "Use of filter vectors in hyperspectral data analysis," in SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, 1995, pp. 148-157: International Society for Optics and Photonics.
19. [19] A. Ifarraguerri and C.-I. Chang, "Multispectral and hyperspectral image analysis with convex cones," IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 756-770, 1999. [DOI:10.1109/36.752192]
20. [20] A. Plaza, P. Martínez, R. Pérez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE transactions on geoscience and remote sensing, vol. 40, no. 9, pp. 2025-2041, 2002. [DOI:10.1109/TGRS.2002.802494]
21. [21] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, "ICE: A statistical approach to identifying endmembers in hyperspectral images," IEEE transactions on Geoscience and Remote Sensing, vol. 42, no. 10, pp. 2085-2095, 2004. [DOI:10.1109/TGRS.2004.835299]
22. [22] L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 3, pp. 765-777, 2007. [DOI:10.1109/TGRS.2006.888466]
23. [23] D. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial–spectral information for the improved extraction of endmembers," Remote Sensing of Environment, vol. 110, no. 3, pp. 287-303, 2007. [DOI:10.1016/j.rse.2007.02.019]
24. [24] A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection in hyperspectral imagery," IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 3, pp. 446-450, 2007. [DOI:10.1109/LGRS.2007.895727]
25. [25] J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, 2008, vol. 3, pp. III-250-III-253: IEEE. [DOI:10.1109/IGARSS.2008.4779330]
26. [26] J. M. Bioucas-Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing," in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS'09. First Workshop on, 2009, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2009.5289072]
27. [27] A. Zare and P. Gader, "Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering," in Fuzzy Systems (FUZZ), 2011 IEEE International Conference on, 2011, pp. 741-746: IEEE. [DOI:10.1109/FUZZY.2011.6007622]
28. [28] A. Zare, O. Bchir, H. Frigui, and P. Gader, "Spatially-smooth piece-wise convex endmember detection," in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, 2010, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2010.5594897]
29. [29] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Dictionary pruning in sparse unmixing of hyperspectral data," in Hyperspectral Image and Signal Processing (WHISPERS), 2012 4th Workshop on, 2012, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2012.6874329]
30. [30] M.-D. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, "MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 7, pp. 4364-4382, 2014. [DOI:10.1109/TGRS.2013.2281589]
31. [31] M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Unmixing sparse hyperspectral mixtures," in Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, 2009, vol. 4, pp. IV-85-IV-88: IEEE. [DOI:10.1109/IGARSS.2009.5417368]
32. [32] J. M. Bioucas-Dias and M. A. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing," in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, 2010, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2010.5594963]
33. [33] M.-D. Iordache, A. Plaza, and J. Bioucas-Dias, "On the use of spectral libraries to perform sparse unmixing of hyperspectral data," in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, 2010, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2010.5594888]
34. [34] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Sparse unmixing of hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp. 2014-2039, 2011. [DOI:10.1109/TGRS.2010.2098413]
35. [35] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Collaborative sparse regression for hyperspectral unmixing," IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 341-354, 2014. [DOI:10.1109/TGRS.2013.2240001]
36. [36] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 11, pp. 4484-4502, 2012. [DOI:10.1109/TGRS.2012.2191590]
37. [37] X.-L. Zhao, F. Wang, T.-Z. Huang, M. K. Ng, and R. J. Plemmons, "Deblurring and sparse unmixing for hyperspectral images," IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 7, pp. 4045-4058, 2013. [DOI:10.1109/TGRS.2012.2227764]
38. [38] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Hyperspectral unmixingwith sparse group lasso," in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011, pp. 3586-3589: IEEE. [DOI:10.1109/IGARSS.2011.6049999]
39. [39] J. Bieniarz, R. Müller, X. Zhu, and P. Reinartz, "Sparse approximation, coherence and use of derivatives in hyperspectral unmixing," 2012.
40. [40] K. E. Themelis, A. A. Rontogiannis, and K. Koutroumbas, "Sparse semi-supervised hyperspectral unmixing using a novel iterative bayesian inference algorithm," in Signal Processing Conference, 2011 19th European, 2011, pp. 1165-1169: IEEE.
41. [41] D. R. Thompson, R. Castano, and M. S. Gilmore, "Sparse superpixel unmixing for exploratory analysis of CRISM hyperspectral images," in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS'09. First Workshop on, 2009, pp. 1-4: IEEE. [DOI:10.1109/WHISPERS.2009.5289045]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2015 All Rights Reserved | Signal and Data Processing