1. F. Cavallo, A. Mohn, F. Chiarelli, and C. Giannini, "Evaluation of bone age in children: a mini-review," Frontiers in Pediatrics, vol. 9, p. 580314, 2021. [
DOI:10.3389/fped.2021.580314] [
PMID] [
]
2. A. Tekın and K. Cesur Aydın, "Comparative determination of skeletal maturity by hand-wrist radiograph, cephalometric radiograph and cone beam computed tomography," Oral Radiology, vol. 36, pp. 327-336, 2020. [
DOI:10.1007/s11282-019-00408-y] [
PMID]
3. A. L. Dallora, P. Anderberg, O. Kvist, E. Mendes, S. Diaz Ruiz, and J. Sanmartin Berglund, "Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis," PloS one, vol. 14, no. 7, p. e0220242, 2019. [
DOI:10.1371/journal.pone.0220242] [
PMID] [
]
4. P. Sousa-e-Silva et al., "Skeletal age assessed by TW2 using 20-bone, carpal and RUS score systems: Intra-observer and inter-observer agreement among male pubertal soccer players," Plos one, vol. 17, no. 8, p. e0271386, 2022. [
DOI:10.1371/journal.pone.0271386] [
PMID] [
]
5. Y. M. Wang, T. H. Tsai, J. S. Hsu, M. F. Chao, Y. T. Wang, and T. S. Jaw, "Automatic assessment of bone age in Taiwanese children: a comparison of the Greulich and Pyle method and the Tanner and Whitehouse 3 method," The Kaohsiung Journal of Medical Sciences, vol. 36, no. 11, pp. 937-943, 2020. [
DOI:10.1002/kjm2.12268] [
PMID]
6. T. Widek, P. Genet, T. Ehammer, T. Schwark, M. Urschler, and E. Scheurer, "Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist," Forensic Science International, vol. 319, p. 110654, 2021. [
DOI:10.1016/j.forsciint.2020.110654] [
PMID]
7. D. D. Martin, A. D. Calder, M. B. Ranke, G. Binder, and H. H. Thodberg, "Accuracy and self-validation of automated bone age determination," Scientific Reports, vol. 12, no. 1, p. 6388, 2022. [
DOI:10.1038/s41598-022-10292-y] [
PMID] [
]
8. A. Elhakeem, M. Frysz, K. Tilling, J. H. Tobias, and D. A. Lawlor, "Association between age at puberty and bone accrual from 10 to 25 years of age," JAMA network open, vol. 2, no. 8, pp. e198918-e198918, 2019. [
DOI:10.1001/jamanetworkopen.2019.8918] [
PMID] [
]
9. H. Sarabi Sarvarani and F. Abdali-Mohammadi, "An Ensemble Convolutional Neural Networks for Detection of Growth Anomalies in Children with X-ray Images," Journal of AI and Data Mining, vol. 10, no. 4, pp. 479-492, 2022.
10. M. Sepahvand, F. Abdali-Mohammadi, and A. Taherkordi, "Teacher-student knowledge distillation based on decomposed deep feature representation for intelligent mobile applications," Expert Systems with Applications, vol. 202, p. 117474, 2022. [
DOI:10.1016/j.eswa.2022.117474]
11. M. Sepahvand, F. Abdali-Mohammadi, and A. Taherkordi, "An adaptive teacher-student learning algorithm with decomposed knowledge distillation for on-edge intelligence," Engineering Applications of Artificial Intelligence, vol. 117, p. 105560, 2023. [
DOI:10.1016/j.engappai.2022.105560]
12. F. Abdali-Mohammadi, M. Mardanpour, M. Sepahvand, H. Sarabi, "A Bone Age Assessment based on a hybrid Knowledge Distillation Paradigm using single ROI," available online at: https://www.authorea.com/doi/full/10.22541/au.166869703.37960946
13. C. Liu, H. Xie, Y. Liu, Z. Zha, F. Lin, and Y. Zhang, "Extract Bone Parts Without Human Prior: End-to-end Convolutional Neural Network for Pediatric Bone Age Assessment," in Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, Cham, D. Shen et al., Eds., 2019: Springer International Publishing, pp. 667-675. [
DOI:10.1007/978-3-030-32226-7_74]
14. S M. S. Hosseini et al., "Atlas of digital pathology: A generalized hierarchical histological tissue type-annotated database for deep learning," 2019, pp. 11747-11756. [
DOI:10.1109/CVPR.2019.01202]
15. S. Koitka, M. S. Kim, M. Qu, A. Fischer, C. M. Friedrich, and F. Nensa, "Mimicking the radiologists' workflow: Estimating pediatric hand bone age with stacked deep neural networks," Medical Image Analysis, vol. 64, p. 101743, 2020.08.01. 2020, doi: https:..doi.org.10.1016.j.media.2020.101743. [
DOI:10.1016/j.media.2020.101743] [
PMID]
16. C. González, M. Escobar, L. Daza, F. Torres, G. Triana, and P. Arbeláez, "SIMBA: Specific Identity Markers for Bone Age Assessment," in Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, Cham, A. L. Martel et al., Eds., 2020.. 2020: Springer International Publishing, pp. 753-763. [
DOI:10.1007/978-3-030-59725-2_73]
17. D. Wang, K. Zhang, J. Ding, and L. Wang, "Improve Bone Age Assessment by Learning from Anatomical Local Regions," in Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, Cham, A. L. Martel et al., Eds., 2020.. 2020: Springer International Publishing, pp. 631-640. [
DOI:10.1007/978-3-030-59725-2_61]
18. A. Wibisono et al., "Deep learning and classic machine learning approach for automatic bone age assessment," in 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2019: IEEE, pp. 235-240. [
DOI:10.1109/ACIRS.2019.8935965]
19. V. I. Iglovikov, A. Rakhlin, A. A. Kalinin, and A. A. Shvets, "Paediatric bone age assessment using deep convolutional neural networks," in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, 2018: Springer, pp. 300-308. [
DOI:10.1007/978-3-030-00889-5_34]
20. S. Deshmukh and A. Khaparde, "Faster region-convolutional neural network oriented feature learning with optimal trained recurrent neural network for bone age assessment for pediatrics," Biomedical Signal Processing and Control, vol. 71, p. 103016, 2022. [
DOI:10.1016/j.bspc.2021.103016]
21. I. Salim and A. B. Hamza, "Ridge regression neural network for pediatric bone age assessment," Multimedia Tools and Applications, vol. 80, no. 20, pp. 30461-30478, 2021. [
DOI:10.1007/s11042-021-10935-8]
22. S. J. Son et al., "TW3-based fully automated bone age assessment system using deep neural networks," IEEE Access, vol. 7, pp. 33346-33358, 2019. [
DOI:10.1109/ACCESS.2019.2903131]
23. Z. Yang, C. Cong, M. Pagnucco, and Y. Song, "Multi-scale multi-reception attention network for bone age assessment in X-ray images," Neural Networks, vol. 158, pp. 249-257, 2023. [
DOI:10.1016/j.neunet.2022.11.002] [
PMID]
24. C. S. Politzer, J. D. Bomar, H. C. Pehlivan, P. Gurusamy, E. W. Edmonds, and A. T. Pennock, "Creation and validation of a shorthand magnetic resonance imaging bone age assessment tool of the knee as an alternative skeletal maturity assessment," The American Journal of Sports Medicine, vol. 49, no. 11, pp. 2955-2959, 2021. [
DOI:10.1177/03635465211032986] [
PMID]
25. M. N. Meqdad, H. T. Rauf, and S. Kadry, "Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks," Applied System Innovation, vol. 6, no. 1, p. 21, 2023. [Online]. Available: https:..www.mdpi.com.2571-5577.6.1.21. [
DOI:10.3390/asi6010021]
26. C. Chen, Z. Chen, X. Jin, L. Li, W. Speier, and C. W. Arnold, "Attention-Guided Discriminative Region Localization and Label Distribution Learning for Bone Age Assessment," (in eng), IEEE J Biomed Health Inform, vol. 26, no. 3, pp. 1208-1218, Mar 2022, doi: 10.1109.jbhi.2021.3095128. [
DOI:10.1109/JBHI.2021.3095128] [
PMID]
27. C. Spampinato, S. Palazzo, D. Giordano, M. Aldinucci, and R. Leonardi, "Deep learning for automated skeletal bone age assessment in X-ray images," (in eng), Med Image Anal, vol. 36, pp. 41-51, Feb 2017, doi: 10.1016.j.media.2016.10.010. [
DOI:10.1016/j.media.2016.10.010] [
PMID]
28. M. Kashif, T. M. Deserno, D. Haak, and S. Jonas, "Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment," Computers in biology and medicine, vol. 68, pp. 67-75, 2016. [
DOI:10.1016/j.compbiomed.2015.11.006] [
PMID]
29. A K. Alshamrani and A. C. Offiah, "Applicability of two commonly used bone age assessment methods to twenty-first century UK children," European radiology, vol. 30, pp. 504-513, 2020. [
DOI:10.1007/s00330-019-06300-x] [
PMID] [
]
30. X. Pan, Y. Zhao, H. Chen, D. Wei, C. Zhao, and Z. Wei, "Fully Automated Bone Age Assessment on Large‐Scale Hand X‐Ray Dataset," International journal of biomedical imaging, vol. 2020, no. 1, p. 8460493, 2020. [
DOI:10.1155/2020/8460493] [
PMID] [
]
31. Y. A. Ding, F. Mutz, K. F. Côco, L. A. Pinto, and K. S. Komati, "Bone age estimation from carpal radiography images using deep learning," Expert Systems, vol. 37, no. 6, p. e12584, 2020, doi: https:..doi.org.10.1111.exsy.12584. [
DOI:10.1111/exsy.12584]
32. J. Jasper Gnana Chandran, R. Karthick, R. Rajagopal, and P. Meenalochini, "Dual-Channel Capsule Generative Adversarial Network Optimized with Golden Eagle Optimization for Pediatric Bone Age Assessment from Hand X-Ray Image," International Journal of Pattern Recognition and Artificial Intelligence, vol. 37, no. 02, p. 2354001, 2023/02/01 2022, doi: 10.1142/S021800142354001. [
DOI:10.1142/S0218001423540010]
33. Z. Li et al., "Bone age assessment based on deep neural networks with annotation-free cascaded critical bone region extraction," Frontiers in Artificial Intelligence, vol. 6, p. 1142895, 2023. [
DOI:10.3389/frai.2023.1142895] [
PMID] [
]
34. P. Sousa-e-Silva et al., "Intra-observer reproducibility and inter-observer agreement of Fels skeletal age assessments among male tennis players 8-16 years," BMC Pediatrics, vol. 23, no. 1, p. 196, 2023/04/26 2023, doi: 10.1186/s12887-023-03965-8. [
DOI:10.1186/s12887-023-03965-8] [
PMID] [
]
35. A. Hassan Pour Askari, A. Khatibi Bardsiri, M. Mohammadi Ghanat Ghestani, "IoT privacy for the transmission of data in the field of health using blockchain", signal and data processing, vol.21, no. 3, pp. 149-178, 2024 [
DOI:10.61186/jsdp.21.3.149]
36. M. khalooei, M. Homayounpour, M. Amirmazlaghani, "A survey on vulnerability of deep neural networks to adversarial examples and defense approaches to deal with them", signal and data processing, vol. 20, no. 2, pp. 113-144, 2023 [
DOI:10.61186/jsdp.20.2.113]