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Abstract

With the expansion of social networks, the use of recommender systems in these networks has attracted
considerable attention. Recommender systems have become an important tool for alleviating the
information that overload problem of users by providing personalized recommendations to a user who
might like based on past preferences or observed behavior about one or various items. In these systems,
the users’ behavior is dynamic and their preferences change over time for different reasons. The
adaptability of recommender systems to capture the evolving user preferences, which are changing
constantly, is essential.

Recent studies point out that the modeling and capturing the dynamics of user preferences lead to
significant improvements in recommendation accuracy. In spite of the importance of this issue, only a
few approaches recently proposed that take into account the dynamic behavior of the users in making
recommendations. Most of these approaches are based on the matrix factorization scheme. However,
most of them assume that the preference dynamics are homogeneous for all users, whereas the changes
in user preferences may be individual and the time change pattern for each user differs. In addition,
because the amount of numerical ratings dramatically reduced in a specific time period, the sparsity
problem in these approaches is more intense. Exploiting social information such as the trust relations
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between users besides the users’ rating data can help to alleviate the sparsity problem. Although social
information is also very sparse, especially in a time period, it is complementary to rating information.
Some works use tensor factorization to capture user preference dynamics. Despite the success of these
works, the processing and solving the tensor decomposition is hard and usually leads to very high
computing costs in practice, especially when the tensor is large and sparse.

In this paper, considering that user preferences change individually over time, and based on the
intuition that social influence can affect the users’ preferences in a recommender system, a social
recommender system is proposed. In this system, the users’ rating information and social trust
information are jointly factorized based on a matrix factorization scheme. Based on this scheme, each
users and items is characterized by a sets of features indicating latent factors of the users and items in
the system. In addition, it is assumed that user preferences change smoothly, and the user preferences in
the current time period depend on his/her preferences in the previous time period. Therefore, the user
dynamics are modeled into this framework by learning a transition matrix of user preferences between
two consecutive time periods for each individual user. The complexity analysis implies that this system
can be scaled to large datasets with millions of users and items. Moreover, the experimental results on a
dataset from a popular product review website, Epinions, show that the proposed system performs
better than competitive methods in terms of MAE and RMSE.

Keywords: Social recommender system, rating prediction, preference dynamics, matrix factorization,
trust.
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(Figure-1): An example to illustrate the main data sources in the proposed model
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Algorithm 1. The process of rating prediction

Input:
matrices; R®, Rt-D T®:
the dimension of the latent feature: d;
parameters: Ar, A1, Az;
learning rate: n;
convergence parameter: .

Output: matrix R®.

1 Map the raw ratings in R® and R¢~ into [0,1].
2 Initialize M for each user i, U®, V® and W®,
3 Compute UE-D,

4 Repeat

5  Randomly select RS) eR®and TP e T®,
Update U (equation (5)).

Update V) (equation (6)).

Update W, (equation (7)).

9 Update M (equation (8)).
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10  Compute £ (equation (4)).
11 Until change of L is less than & igh oo T Sloy 5,90 M1 5 (0,15 ety slo S
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(Figure-3): An example of the rating predictions in the proposed model
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(Table-2) The performance results of comparative methods
Method Metrics | Case-1 | Case-2 | Case-3 | Case-4 | Case-5 | Case-6 Case-7 Case-8 Case-9 | Case-10 | Average+Std

MAE 1.2819 | 1.2114 | 1.2184 | 1.1758 | 1.1814 | 1.1898 1.1423 1.1141 1.129 1.1046 | 1.1749+0.0545

TimeSVD++

RMSE | 1.4185 | 1.4111 | 1.4192 | 1.3624 | 1.3344 | 1.3367 1.2998 1.2645 1.2708 | 1.2591 | 1.3377+0.0638

BTME MAE 1.0153 | 0.998 | 0.9949 |0.9415* | 0.941* | 0.9378* | 0.9589 0.9654 0.9862 | 1.0141 |0.9753+0.0302
RMSE 1.28 | 1.2703 | 1.2814 | 1.2145 |1.2141*| 1.1734 | 1.1203* | 1.1269* | 1.1413 |1.1291* | 1.1951+0.0658

MAE 1.2639 | 1.2401 | 1.2134 | 1.2095 | 1.1954 | 1.1154 1.1192 1.0814 1.0214 1.033 | 1.1493+0.0868

DMNMF RMSE | 1.3871 | 1.3943 | 1.3814 | 1.3819 | 1.3312 | 1.2767 1.2815 1.2293 1.2108 | 1.2215 | 1.3096+0.0744
TME MAE 1.2723 | 1.2471 | 1.246 | 1.2191 | 1.1648 | 1.1621 1.1576 1.1053 1.1104 | 1.1027 | 1.1036+0.0635
RMSE | 1.3904 | 1.3812 | 1.3802 | 1.3296 | 1.3195 | 1.3013 1.2843 1.2428 1.2456 | 1.2437 | 1.3119+0.0584

CMF MAE 1.1859 | 1.1151 | 1.0904 | 1.0497 | 0.9701 | 0.9665 0.9998 0.9649 0.9971 1.004 | 1.0344+0.0745
RMSE | 1.3512 | 1.3476 | 1.3272 | 1.29 | 1.2652 | 1.1376* | 1.1385 1.1286 | 1.1257* | 1.1354 |1.2247+0.0997

TrUStPME MAE 1.1438 | 1.108 | 1.0636 | 1.0319 | 0.9742 | 0.9691 0.9696 0.9704 0.9805 | 0.9911 |1.0202+0.0643

RMSE | 1.3314 | 1.3256 | 1.3207 | 1.3151 | 1.2614 | 1.2322 1.1291 1.1278 1.1259 | 1.1311 | 1.23+0.0926

MAE | 0.9971* [ 0.9766* | 0.9763* | 0.9775 | 0.9833 | 0.9711 | 0.9584* | 0.9612* | 0.9711* |0.9732* | 0.9745+0.0109
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