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Abstract

Recognition of visual events as a video analysis task has become popular in machine learning
community. While the traditional approaches for detection of video events have been used for a long
time, the recently evolved deep learning based methods have revolutionized this area. They have enabled
event recognition systems to achieve detection rates which were not reachable by traditional approaches.
Convolutional neural networks (CNNs) are among the most popular types of deep networks utilized in
both imaga and video recognition tasks. They are initially made up of several convolutional layers, each
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of which followed by proper activation and possibly pooling layers. They often encompass one or more
fully connected layers as the last layers. The favorite property of them in this work is the ability of CNNs
to extract mid-level features from video frames. Actually, despite traditional approaches based on low-
level visual features, the CNNs make it possible to extract higher level semantic features from the video
frames.

The focus of this paper is on recognition of visual events in video using CNNs. In this work, image
trained descriptors are used to make video recognition can be done with low computational complexity.

A tuned CNN is used as the frame descriptor and its fully connected layers are utilized as concept
detectors. So, the featue maps of activation layers following fully connected layers act as feature vectors.
These feature vectors (concept vectors) are actually the mid-level features which are a better video
representation than the low level features. The obtained mid-level features can partially fill the semantic
gap between low level features and high level semantics of video.

The obtained descriptors from the CNNs for each video are varying length stack of feature vectors.
To make the obtained descriptors organized and prepared for clasification, they must be properly
encoded. The coded descriptors are then normalized and classified. The normaliztion may consist of
conventional £1and £, normalization or more advanced power-law normalization. The main purpose of
normalization is to change the distribution of descriptor values in a way to make them more uniformly
distributed. So, very large or very small descriptors could have a more balanced impact on recognition
of events.

The main novelty of this paper is that spatial and temporal information in mid-level features are
employed to construct a suitable coding procedure. We use temporal information in coding of video
descriptors. Such information is often ignored, resulting in reduced coding efficiency. Hence, a new
coding is proposed which improves the trade-off between the computation complexity of the recognition
scheme and the accuracy in identifying video events.

It is also shown that the proposed coding is in the form of an optimization problem that can be
solved with existing algorithms. The optimization problem is initially non-convex and not solvable with
the existing methods in polynomial time. So, it is transformed to a convex form which makes it a well
defined optimization problem. While there are many methods to handle these types of convex
optimization problems, we chose to use a strong convex optimization library to efficiently solve the
problem and obtain the video descriptors.

To confirm the effectiveness of the proposed descriptor coding method, extensive experiments are
done on two large public datasets: Columbia consumer video (CCV) dataset and ActivityNet dataset.
Both CCV and ActivityNet are popular publically available video event recognition datasets, with
standard train/test splits, which are large enough to be used as reasonable benchmarks in video
recognition tasks.

Compared to the best practices available in the field of detecting visual events, the proposed
method provides a better model of video and a much better mean average precision, mean average
recall, and F score on the test set of CCV and ActivityNet datasets. The presented method not only
improves the performance in terms of accuracy, but also reduces the computational cost with respect to
those of the state of the art. The experiments vividly confirm the potential of the proposed method in
improving the performance of visual recognition systems, especially in supervised video event detection.

Keywords: Convolutional neural network, Average pooling, Max pooling, Support vector machine,
Vector of locally aggregated descriptors.
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(Figure-2): Mean average precision with respect to
regularization prameters for 1000 dimensional descriptors
and eight clusters on CCV dataset.

CCV osldacgomxo 59 3 g b duns o —F-Y-Y
sly ewnardb sl el () S0
ol sl e o lis |, CCV o oolsacgass
oS Joys wiies adly gboes, L blie el
by oadugin gloes, b bl ol slagsi
oyelloy o ple polie wiis iy asis o)oKl
sl Jles! Sols ooz alds gloa b slouds
oo lad 1) el Jlozal gl j gt g ol oy alyo
polas 09l gandab alf &dly oo, pli asdly oo, aS
) i sl ol e ol S 5l s
S By w900 ATl &5 jebles aias e Glis
S ASSRe wi)ls mal ol (s g (sogpie (Smon
S W0 Gl (1) U5 @ azg b g Iz pa
Wedding reception = gwg,e b L. xlE
5 Sy bl 5l g0l calls a5 Wedding Ceremony
oLidl pa b laging 5l (can )0 w)ls o8 4 (cosede
Sy lade obul g gedge (pl g o a3 S
Gdoysbar 09l o0 axl Gl yo ol k3l gl
zexe 5 DOg g Cat 03) 93 3,50 ;3 £9550 (o
3 e )0 d A sepphe Calld Ldoay a5

g oa o0ld asis oLl lagiayg

69 3 GOy 09 vl eyl s ko (Y- JSi)
CCV o315 ac gozxo

(Figure-3): Classification confusion matrix for proposed
method on CCV dataset.
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(Table-3): Comparison of the results between proposed
method and the state of the art in terms of mAP, mAR, and
F-measure on CCV dataset.
mAP (%) [ MAR (%) | F (%)

95

[55] o, Se 4 Jiang 59.5 57.3 58.3
[65] o), Sen 5 Xu 60.3 57.4 58.8
[66] |, Ko g Ma 63.0 58.1 60.4
[67] o, gYe 64.0 62.3 63.1

[68] ), 5em 5 Jhuo | 64.0 62.1 63.0
[69] )l \Kow 5 Liu | 682 66.5 67.3
[37] o), Son 5 Zhao| 691 65.9 67.4
[70] o), 5o WU 70.6 67.8 69.1
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(Figure-5): Classification confusion matrix for proposed
method on ActivityNet dataset.
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(Table-5): Comparison of the proposed method and the state
of the art in terms of average length of videos (in seconds)
which can be processed per second.
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(Figure-6): Per-class classification average precision of the
proposed method on ActivityNet dataset.
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(Table-4): Comparison of the results between proposed
method and the state of the art in terms of mAP, mAR, and
F-measur on ActivityNet dataset.

o9y MAP (%) | MAR (%) | F (%)
[55] ol Ko 5 Jiang 63.8 62.7 63.2
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[69] o, \Sen g Liu 715 69.3 70.3
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[70] ol e WU 73.0 714 72.1
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