1. [1] Y. Zhang, T. Liu, M. Long, and M. I. Jordan, "Bridging Theory and Algorithm for Domain Adaptation", arXiv preprint arXiv:1904.05801, 2019.
2. [2] S. Rezaei and J. Tahmoresnezhad, "Discriminative and domain invariant subspace alignment for visual tasks", Iran Journal of Computer Science, pp. 1-12, 2019. [
DOI:10.1007/s42044-019-00037-y]
3. [3] W. Kumagai and T. Kanamori, "Risk bound of transfer learning using parametric feature mapping and its application to sparse coding", Machine Learning, pp. 1-34, 2019. [
DOI:10.1007/s10994-019-05805-2]
4. [4] I. Jolliffe "Principal component analysis", Wiley, vol. 2, pp. 433-459, 2002. [
DOI:10.1002/wics.101]
5. [5] M. Jing, J. Li, J. Zhao, and K. Lu, "Learning distribution-matched landmarks for unsupervised domain adaptation", In International conference on database systems for advanced applications, pp. 491-508, 2018. [
DOI:10.1007/978-3-319-91458-9_30]
6. [6] A. Li, D. Chen, Z. Wu, G. Sun, and K. Lin, "Self-supervised sparse coding scheme for image classification based on low rank represent-tation", PloS one, Vol. 13(6), e0199141, 2018. [
DOI:10.1371/journal.pone.0199141] [
PMID] [
PMCID]
7. [7] A. Mirjalili, V. Abootalebi, M. T. Sadeghi, "mproving the performance of sparse representation-based classifier for EEG classification," JSDP , pp. 43-55, 2015.
8. [8] X. Li, M. Fang, J. J. Zhang and J. Wu, "Sample selection for visual domain adaptation via sparse coding", Signal Processing: Image Communi-cation, vol. 44, pp. 92-100, 2016. [
DOI:10.1016/j.image.2016.03.009]
9. [9] B. Gong, Y. Shi, F. Sha and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation", Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recog-nition, pp. 2066-2073, 2012.
10. [10] S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang, "Domain adaptation via transfer component analysis", IEEE Trans. Neural Netw, vol. 22, no. 2, pp. 199-210, 2011. [
DOI:10.1109/TNN.2010.2091281] [
PMID]
11. [11] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, "Unsupervised visual domain adap-tation using subspace alignment", in Proc. IEEE International Conference on Computer vision, pp. 2960-2967, 2013. [
DOI:10.1109/ICCV.2013.368]
12. [12] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang, "Scatter component analysis: A unified framework for domain adaptation and domain generalizayion", IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2016.
13. [13] B. Sun and K. Saenko, "Subspace distribution alignment for unsupervised domain adaptation", in Proc. British Machine Vision Conference, 2015. [
DOI:10.5244/C.29.24]
14. [14] J. Tahmoresnezhad and S. Hashemi, "Visual domain adaptation via transfer feature learning", Knowledge and Information Systems, vol. 50, no. 2, pp. 585-605, 2017. [
DOI:10.1007/s10115-016-0944-x]
15. [15] X. Li, M. Fang, J. J. Zhang and J. Wu, "Sample selection for visual domain adaptation via sparse coding", Signal Processing: Image Communi-cation, vol. 44, pp. 92-100, 2016. [
DOI:10.1016/j.image.2016.03.009]
16. [16] K. Saenko, B. Kulis, M. Fritz and T. Darrell, "Adapting visual category models to new domains", Proceedings of the European Con-ference on Computer Vision, pp. 213-226, 2010. [
DOI:10.1007/978-3-642-15561-1_16]
17. [17] G.Griffin, A. Holub and P. Perona, "Caltech-256 object category dataset", Technical Report7694, 2007.
18. [18] J. J. Hull, "A¬", IEEE Trans. Pattern Anal. Mach. Intell, vol. 16, no. 5, pp. 550-554, 1994. [
DOI:10.1109/34.291440]
19. [19] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition", Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [
DOI:10.1109/5.726791]
20. [20] L. Duan, D. Xu, I.W. Tsang, "Domain adaptation from multiple sources: a domain-dependent regularization approach", IEEE Trans. Neural Netw. Learn. Syst, vol. 23, no. 3, pp. 504-518, 2012. [
DOI:10.1109/TNNLS.2011.2178556] [
PMID]