1. [1] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques. Elsevier, 2011.
2. [2] S. Vega-Pons and J. Ruiz-Shulcloper, "a Survey of Clustering Ensemble Algorithms," Int. J. Pattern Recognit. Artif. Intell., vol. 25, no. 03, pp. 337-372, 2011. [
DOI:10.1142/S0218001411008683]
3. [3] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, "On combining classifiers," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226-239, 1998. [
DOI:10.1109/34.667881]
4. [4] S.-B. Cho and J. H. Kim, "Combining multiple neural networks by fuzzy integral for robust classification," Syst. Man Cybern. IEEE Trans., vol. 25, no. 2, pp. 380-384, 1995. [
DOI:10.1109/21.364825]
5. [5] J. Franke and E. Mandler, "A comparison of two approaches for combining the votes of cooperating classifiers," in Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR International Conference on, 1992, pp. 611-614.
6. [6] L. K. Hansen and P. Salamon, "Neural network ensembles," IEEE Trans. Pattern Anal. Mach. Intell., no. 10, pp. 993-1001, 1990. [
DOI:10.1109/34.58871]
7. [7] S. Hashem and B. Schmeiser, "Improving model accuracy using optimal linear combinations of trained neural networks," Neural Networks, IEEE Trans., vol. 6, no. 3, pp. 792-794, 1995. [
DOI:10.1109/72.377990] [
PMID]
8. [8] J. Kittler, "Improving recognition rates by classifier combination: A theoretical framework," DAC and IS, editors, Progress in Handwriting Recognition, pp. 231-248, 1997.
9. [9] D. J. Miller and L. Yan, "Critic-driven ensemble classification," Signal Process. IEEE Trans., vol. 47, no. 10, pp. 2833-2844, 1999. [
DOI:10.1109/78.790663]
10. [10] K. W. De Bock, K. Coussement, and D. Van den Poel, "Ensemble classification based on generalized additive models," Comput. Stat. Data Anal., vol. 54, no. 6, pp. 1535-1546, 2010. [
DOI:10.1016/j.csda.2009.12.013]
11. [11] C. Domeniconi and M. Al-Razgan, "Weighted cluster ensembles: Methods and analysis," ACM Trans. Knowl. Discov. from Data, vol. 2, no. 4, pp. 17, 2009. [
DOI:10.1145/1460797.1460800]
12. [12] A. Strehl and J. Ghosh, "Cluster ensembles---a knowledge reuse framework for combining multiple partitions," J. Mach. Learn. Res., vol. 3, no. Dec, pp. 583-617, 2002.
13. [13] H. Amirkhani and M. Rahmati, "Agreement/disagreement based crowd labeling," Appl. Intell., vol. 41, no. 1, pp. 212-222, Jul. 2014. [
DOI:10.1007/s10489-014-0516-2]
14. [14] N. Littlestone and M. K. Warmuth, "The weighted majority algorithm," in Foundations of Computer Science, 1989., 30th Annual Symposium on, 1989, pp. 256-261. [
DOI:10.1109/SFCS.1989.63487]
15. [15] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, "Supervised machine learning: A review of classification techniques." Emerging Artificial Intelligence Applications in Computer Engineering, vol. 160, pp. 3-24, 2007. [
DOI:10.1007/s10462-007-9052-3]
16. [16] T. G. Dietterich, "Ensemble methods in machine learning," in International workshop on multiple classifier systems, 2000, pp. 1-15. [
DOI:10.1007/3-540-45014-9_1]
17. [17] T. Windeatt, "Vote counting measures for ensemble classifiers," Pattern Recognit., vol. 36, no. 12, pp. 2743-2756, 2003. [
DOI:10.1016/S0031-3203(03)00191-2]
18. [18] S. Wang, A. Mathew, Y. Chen, L. Xi, L. Ma, and J. Lee, "Empirical analysis of support vector machine ensemble classifiers," Expert Syst. Appl., vol. 36, no. 3, pp. 6466-6476, 2009. [
DOI:10.1016/j.eswa.2008.07.041]
19. [19] A. J. C. Sharkey, Combining artificial neural nets: ensemble and modular multi-net systems. Springer Science & Business Media, 2012.
20. [20] A. L. N. Fred and A. K. Jain, "Data clustering using evidence accumulation," in Pattern Recognition, 2002. Proceedings. 16th International Conference on, 2002, vol. 4, pp. 276-280.
21. [21] A. Topchy, A. K. Jain, and W. Punch, "A mixture model for clustering ensembles," in Society for Industrial and Applied Mathematics. Proceedings of the SIAM International Conference on Data Mining, 2004, pp. 379. [
DOI:10.1137/1.9781611972740.35]
22. [22] S. Dudoit and J. Fridlyand, "Bagging to improve the accuracy of a clustering procedure," Bioinformatics, vol. 19, no. 9, pp. 1090-1099, 2003. [
DOI:10.1093/bioinformatics/btg038] [
PMID]
23. [23] D. Gondek and T. Hofmann, "Non-redundant clustering with conditional ensembles," in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, 2005, pp. 70-77. [
DOI:10.1145/1081870.1081882]
24. [24] A. Topchy, A. K. Jain, and W. Punch, "Combining multiple weak clusterings," in Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, 2003, pp. 331-338.
25. [25] L. I. Kuncheva, S. T. Hadjitodorov, and Others, "Using diversity in cluster ensembles," in Systems, man and cybernetics, 2004 IEEE international conference on, 2004, vol. 2, pp. 1214-1219.
26. [26] B. Minaei-Bidgoli, A. Topchy, and W. F. Punch, "Ensembles of partitions via data resampling," in Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. International Conference on, 2004, vol. 2, pp. 188-192. [
DOI:10.1109/ITCC.2004.1286629]
27. [27] A. Topchy, A. K. Jain, and W. Punch, "Clustering ensembles: Models of consensus and weak partitions," Pattern Anal. Mach. Intell. IEEE Trans., vol. 27, no. 12, pp. 1866-1881, 2005. [
DOI:10.1109/TPAMI.2005.237] [
PMID]
28. [28] H. Alizadeh, M. Moshki, H. Parvin, B. Minaei Bidgoli, "Clustering ensemble based on combination of subset of primary clusters," Signal and Data Processing, vol. 7, no. 1, pp. 19-32, 2010.
29. [29] L. Franek and X. Jiang, "Ensemble clustering by means of clustering embedding in vector spaces," Pattern Recognit., vol. 47, no. 2, pp. 833-842, 2014. [
DOI:10.1016/j.patcog.2013.08.019]
30. [30] A. Mirzaei, "Combining hierarchical clusterings with emphasis on retaining the structural contents of the base clusterings," PhD dissertation, Amirkabir University of Technology, 2009. [
DOI:10.1109/ICPR.2008.4761275]
31. [31] J. H. Friedman and J. J. Meulman, "Clustering objects on subsets of attributes," J. R. Stat. Soc. Ser. B (Statistical Methodol.), vol. 66, no. 4, pp. 815-849, 2004. [
DOI:10.1111/j.1467-9868.2004.02059.x]
32. [32] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopoulos, "Locally adaptive metrics for clustering high dimensional data," Data Min. Knowl. Discov., vol. 14, no. 1, pp. 63-97, 2007. [
DOI:10.1007/s10618-006-0060-8]
33. [33] M. Al-Razgan and C. Domeniconi, "Weighted clustering ensembles," in Proceedings of the 2006 SIAM International Conference on Data Mining, 2006, pp. 258-269. [
DOI:10.1137/1.9781611972764.23]
34. [34] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper, "Weighted cluster ensemble using a kernel consensus function," in Iberoamerican Congress on Pattern Recognition, 2008, pp. 195-202. [
DOI:10.1007/978-3-540-85920-8_24]
35. [35] S. Vega-Pons and J. Ruiz-Shulcloper, "Clustering ensemble method for heterogeneous partitions," in Iberoamerican Congress on Pattern Recognition, 2009, pp. 481-488. [
DOI:10.1007/978-3-642-10268-4_56]
36. [36] T. Li and C. Ding, "Weighted consensus clustering," in Proceedings of the 2008 SIAM International Conference on Data Mining, 2008, pp. 798-809. [
DOI:10.1137/1.9781611972788.72]
37. [37] F. Gullo, A. Tagarelli, and S. Greco, "Diversity-Based Weighting Schemes for Clustering Ensembles," in Proceedings of the 2009 SIAM International Conference on Data Mining, 2009, pp. 437-448. [
DOI:10.1137/1.9781611972795.38] [
PMID]
38. [38] J. W. C.-D. Huang Dong; Lai, "Ensemble clustering using factor graph," Pattern Recognit., vol. 50, pp. 131-142, 2015. [
DOI:10.1016/j.patcog.2015.08.015]
39. [39] H. Liu, J. Wu, T. Liu, D. Tao, and Y. Fu, "Spectral Ensemble Clustering via Weighted K-Means: Theoretical and Practical Evidence," IEEE Trans. Knowl. Data Eng., vol. 29, no. 5, pp. 1129-1143, 2017. [
DOI:10.1109/TKDE.2017.2650229]
40. [40] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, "Weighted-object ensemble clustering: methods and analysis," Knowl. Inf. Syst., pp. 1-29, 2016.
41. [41] Q. Kang, S. Liu, M. Zhou, and S. Li, "A weight-incorporated similarity-based clustering ensemble method based on swarm intelligence," Knowledge-Based Syst., vol. 104, pp. 156-164, 2016. [
DOI:10.1016/j.knosys.2016.04.021]
42. [42] H. Parvin, " Clustering ensembles with weighting clusters and features," PhD dissertation, Iran University of Science & Technology, 2013.
43. [43] A. Litifi Pakdehi, N. Daneshpour, "Cluster ensemble selection using voting," Signal and Data Processing, vol. 15, no. 4, pp. 17-30, 2019. [
DOI:10.29252/jsdp.15.4.17]
44. [44] Z. Yu and H. S. Wong, "Class discovery from gene expression data based on perturbation and cluster ensemble," IEEE Trans. Nanobioscience, vol. 8, no. 2, pp. 147-160, 2009. [
DOI:10.1109/TNB.2009.2023321] [
PMID]
45. [45] H. Liu, M. Shao, S. Li, and Y. Fu, "Infinite ensemble clustering," Data Min. Knowl. Discov., vol. 32, no. 2, pp. 385-416, 2018. [
DOI:10.1007/s10618-017-0539-5]
46. [46] D. Huang, C.-D. Wang, and J.-H. Lai, "Locally weighted ensemble clustering," IEEE Trans. Cybern., vol. 48, no. 5, pp. 1460-1473, 2018. [
DOI:10.1109/TCYB.2017.2702343] [
PMID]
47. [47] C. Zhong, L. Hu, X. Yue, T. Luo, Q. Fu, and H. Xu, "Ensemble clustering based on evidence extracted from the co-association matrix," Pattern Recognit., vol. 92, pp. 93-106, 2019. [
DOI:10.1016/j.patcog.2019.03.020]
48. [48] F. Li, Y. Qian, J. Wang, C. Dang, and L. Jing, "Clustering ensemble based on sample's stability," Artif. Intell., vol. 273, pp. 37-55, 2019. [
DOI:10.1016/j.artint.2018.12.007]
49. [49] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359-392, 1998. [
DOI:10.1137/S1064827595287997]
50. [50] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, "Multilevel hypergraph partitioning: applications in VLSI domain," IEEE Trans. Very Large Scale Integr. Syst., vol. 7, no. 1, pp. 69-79, 1999. [
DOI:10.1109/92.748202]
51. [51] L. Rokach and O. Maimon, "Clustering methods," in Data mining and knowledge discovery handbook, Springer, 2005, pp. 321-352. [
DOI:10.1007/0-387-25465-X_15]
52. [52] P. J. Rousseeuw, "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis," J. Comput. Appl. Math., vol. 20, pp. 53-65, 1987. [
DOI:10.1016/0377-0427(87)90125-7]