1. [1] J. Wang and M. F. Cohen, "Image and video matting: A survey," Found. Trends. Comput. Graph. Vis., vol.3, pp.97-175, Jan. 2007. [
DOI:10.1561/0600000019]
2. [2] J. Johnson, D. Rajan, and H. Cholakkal, "Sparse codes as alpha matte," in BMVC, BMVA Press, 2014. [
DOI:10.5244/C.28.74]
3. [3] Q. Chen, D. Li, and C.-K. Tang, "KNN mat-ting," Pattern Analysis and Machine Intelli-gence, IEEE Transactions on, vol.35, pp.2175-2188, Sept 2013. [
DOI:10.1109/TPAMI.2013.18] [
PMID]
4. [4] J. Gao, M. Paul, and J. Liu, "The image mat-ting method with regularized matte," IEEE Computer Society in ICME, , pp.550-555, 2012. [
DOI:10.1109/ICME.2012.182]
5. [5] P. G. Lee and Y. Wu, "L1 matting," IEEE in ICIP, pp.4665-4668, , 2010.
6. [6] I. Choi, S. Kim, M. S. Brown, and Y. W. Tai, "A learning-based approach to reduce jpeg ar-tifacts in image matting," in 2013 IEEE International Conference on Computer Vision, pp.2880-2887, Dec 2013. [
DOI:10.1109/ICCV.2013.358] [
PMCID]
7. [7] Y. Zheng and C. Kambhamettu, "Learning based digital matting.," in 12th International Conference on Computer Vision, (Kyoto), pp.889-896, 2009.
8. [8] A. Levin, D. Lischinski, and Y. Weiss, "A closed-form solution to natural image matting," IEEE Trans. Pattern Anal. Mach. Intell., vol.30, no.2, pp.228-242, 2008. [
DOI:10.1109/TPAMI.2007.1177] [
PMID]
9. [9] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, "Poisson matting," ACM Trans. Graph., vol.23, pp.315-321, Aug. 2004. [
DOI:10.1145/1015706.1015721]
10. [10] Z. Zhang, Q. Zhu, and Y. Xie, "Learning based alpha matting using support vector regression, " in 2012 ,19th IEEE International Conference on Image Processing, pp. 2109-2112, Sept 2012. [
DOI:10.1109/ICIP.2012.6467308]
11. [11] X. Li and Q. Cui, Parallel Accelerated Matting Method Based on Local Learning, pp.152-162 Cham: Springer International Publishing, 2017. [
DOI:10.1007/978-3-319-54181-5_10]
12. [12] K. Jung, K.Kim, andA. Jain, "Text information extraction in images and video: a survey," Pattern Recognition, vol.37, pp.977-997, 5 2004. [
DOI:10.1016/j.patcog.2003.10.012]
13. [13] N. Otsu, "A Threshold Selection Method from Gray-level Histograms," IEEE Transactions on Systems, Man and Cybernetics, vol.9, no.1, pp.62-66, 1979. [
DOI:10.1109/TSMC.1979.4310076]
14. [14] M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka, C. Owen, and S. Barman, "Blood vessel segmentation methodo-logies in retinal images - a survey," Comput. Methods Prog. Biomed., vol. 108, pp.407-433, Oct. 2012. [
DOI:10.1016/j.cmpb.2012.03.009] [
PMID]
15. [15] M. T. Dehkordi, S. Sadri, and A. Doosthoseini, "A review of coronary vessel segmentation algo-rithms.," Journal of Medical Signals & Sensors, vol.1, no.1, pp.49-54, 2011.
16. [16] P. Talwar , M. D. Gupta, "Alpha-matting based retinal vessel extraction," United States Patent Application 20160163041, June 2016.
17. [17] P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis, "Fast retinal vessel detection and measurement using wavelets and edge location refinement.," PloS one, vol.7, no.3, 2012. [
DOI:10.1371/journal.pone.0032435] [
PMID] [
PMCID]
18. [18] J. I. Orlando , M. Blaschko, "Learning fullyconnected CRFs for blood vessel segmentation in retinal images," in Medical Image Computing and Computer-Assisted Intervention -MIC-CAI 2014, vol. 8673 of Lecture Notes in Computer Science, pp.634-641, Springer, 2014. [
DOI:10.1007/978-3-319-10404-1_79] [
PMID]
19. [19] V. M. Saffarzadeh, A. Osareh, and B. Shadgar, "Vessel segmentation in retinal images using multi-scale line operator and k-means clustering," Journal of Medical Signals & Sensors, vol. 4, no.2, pp.122-129, 2014.
20. [20] G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov, "Trainable COSFIRE filters for vessel delineation with application to retinal images," Medical Image Analysis, vol.19, no.1, pp.46-57, 2015. [
DOI:10.1016/j.media.2014.08.002] [
PMID]
21. [21] M. Zardadi ,and N. Mehrshad, "A New Approach to Retinal Vessel Segmentation by Using Computational Model of Simple Cells in Primary Visual Cortex". JSDP, vol. 13, no. 1, pp. 127-138, 2016.