Volume 13, Issue 3 (12-2016)                   JSDP 2016, 13(3): 35-50 | Back to browse issues page


XML Persian Abstract Print


Sahand University of Technology
Abstract:   (8386 Views)

In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they  get to the shape contour. Three different shape descriptors are extracted from this process: the first descriptor is defined as the number of steps that every circle point should pass which is called Growing Steps. The second descriptor is considered as the boundary distance of the circle points at the end of the growing process. The third descriptor is the curvature of the growing lines created by moving points. Invariance to translation is the intrinsic property of these features. By selecting a fixed starting point and tracing the boundary in a fixed direction (clock-wise or  counter clock-wise), a set of descriptors  could be collected invariant to rotation. Finally, normalizing the descriptors makes them invariant to scale. Support vector machines based on one-shot score are applied in the retrieval stage. Experimental results show that the suggested method has high performance for shape retrieval. It achieves 89.16% retrieval rate on MPEG-7 CE-Shape-1 dataset.

Full-Text [PDF 3686 kb]   (1445 Downloads)    
Type of Study: Research | Subject: Paper
Received: 2015/04/14 | Accepted: 2016/06/15 | Published: 2017/04/23 | ePublished: 2017/04/23

References
1. [1] X. S. Zhou and T. S. Huang, "Unifying keywords and visual contents in image retrieval," Ieee Multimedia, vol. 9, pp. 23-33, 2002. [DOI:10.1109/93.998050]
2. [2] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, et al., "Query by image and video content: The QBIC system," computer, vol. 28, pp. 23-32, 1995.
3. [3] L. Wolf, T. Hassner, and Y. Taigman, "Effective unconstrained face recognition by combining multiple descriptors and learned background statistics," IEEE transactions on pattern analysis and machine intelligence, vol. 33, pp. 1978-1990, 2011. [DOI:10.1109/TPAMI.2010.230] [PMID]
4. [4] D. Zhang and G. Lu, "A comparative study on shape retrieval using Fourier descriptors with different shape signatures," in Proc. Internatio-nal Conference on Intelligent Multime-dia and Distance Education (ICIMADE01), 2001.
5. [5] F. Mokhtarian, S. Abbasi, and J. Kittler, "Efficient and Robust Retrieval by Shape Content," Image Databases and Multi-Media Search, vol. 8, p. 51, 1998. [DOI:10.1142/9789812797988_0005]
6. [6] N. Alajlan, I. El Rube, M. S. Kamel, and G. Freeman, "Shape retrieval using triangle-area representation and dynamic space warping," Pattern Recognition, vol. 40, pp. 1911-1920, 2007. [DOI:10.1016/j.patcog.2006.12.005]
7. [7] Y. K. Liu, W. Wei, P. J. Wang, and B. Žalik, "Co-mpressed vertex chain codes," Pattern Recogn-ition, vol. 40, pp. 2908-2913, 2007. [DOI:10.1016/j.patcog.2007.03.001]
8. [8] J. Iivarinen and A. J. Visa, "Shape recognition of irregular objects," in Photonics East'96, 1996, pp. 25-32.
9. [9] D. Guru and H. Nagendraswamy, "Symbolic representation of two-dimensional shapes," Pattern Recognition Letters, vol. 28, pp. 144-155, 2007. [DOI:10.1016/j.patrec.2006.06.017]
10. [10] S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts," IEEE transactions on pattern analysis and machine intelligence, vol. 24, pp. 509-522, 2002. [DOI:10.1109/34.993558]
11. [11] S. P. Smith and A. K. Jain, "Chord distributions for shape matching," Computer Graphics and Image Processing, vol. 20, pp. 259-271, 1982. [DOI:10.1016/0146-664X(82)90084-3]
12. [12] T. B. Sebastian, P. N. Klein, and B. B. Kimia, "Recognition of shapes by editing their shock graphs," IEEE Transactions on pattern analysis and machine intelligence, vol. 26, pp. 550-571, 2004. [DOI:10.1109/TPAMI.2004.1273924] [PMID]
13. [13] K. Siddiqi and B. B. Kimia, "A shock grammar for recognition," in Computer Vision and Pattern Recognition, 1996. Proceedings CVPR'96, 1996 IEEE Computer Society Conference on, 1996, pp. 507-513. [DOI:10.1109/CVPR.1996.517119]
14. [14] N. Arica and F. T. Y. Vural, "BAS: a perceptual shape descriptor based on the beam angle statistics," Pattern Recognition Letters, vol. 24, pp. 1627-1639, 2003. [DOI:10.1016/S0167-8655(03)00002-3]
15. [15] D. Zhang and G. Lu, "A comparative study on shape retrieval using Fourier descriptors with different shape signatures," in Proc. of intern-ational conference on intelligent multimedia and distance education (ICIMADE01), 2001, pp. 1-9.
16. [16] D. Zhang and G. Lu, "A comparative study of Fourier descriptors for shape representation and retrieval," in Proc. of 5th Asian Conference on Computer Vision (ACCV), 2002, pp. 646-651.
17. [17] D. Zhang and G. Lu, "A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval," Journal of Visual Communication and Image Representation, vol. 14, pp. 39-57, 2003. [DOI:10.1016/S1047-3203(03)00003-8]
18. [18] R. B. Yadav, N. K. Nishchal, A. K. Gupta, and V. K. Rastogi, "Retrieval and classification of shape-based objects using Fourier, generic Fourier, and wavelet-Fourier descriptors techniq-ue: A comparative study," Optics and Lasers in engineering, vol. 45, pp. 695-708, 2007. [DOI:10.1016/j.optlaseng.2006.11.001]
19. [19] G.-H. Chuang and C.-C. Kuo, "Wavelet descriptor of planar curves: Theory and applications," IEEE Transactions on Image Processing, vol. 5, pp. 56-70, 1996. [DOI:10.1109/83.481671] [PMID]
20. [20] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision: Cengage Learning, 2014.
21. [21] M.-K. Hu, "Visual pattern recognition by moment invariants," IRE transactions on information theory, vol. 8, pp. 179-187, 1962. [DOI:10.1109/TIT.1962.1057692]
22. [22] M. E. Celebi and Y. A. Aslandogan, "A compar-ative study of three moment-based shape descriptors," in Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on, 2005, pp. 788-793.
23. [23] J. Wang, X. Bai, X. You, W. Liu, and L. J. Latecki, "Shape matching and classification using height functions," Pattern Recognition Letters, vol. 33, pp. 134-143, 2012. [DOI:10.1016/j.patrec.2011.09.042]
24. [24] Z. Wang and M. Liang, "Locally affine invariant descriptors for shape matching and retrieval," IEEE Signal Processing Letters, vol. 17, pp. 803-806, 2010. [DOI:10.1109/LSP.2010.2057506]
25. [25] R. C. De Amorim and B. Mirkin, "Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering," Pattern Recognition, vol. 45, pp. 1061-1075, 2012. [DOI:10.1016/j.patcog.2011.08.012]
26. [26] A. Efrat and A. Itai, "Improvements on bottleneck matching and related problems using geometry," in Proceedings of the twelfth annual symposium on Computational geometry, 1996, pp. 301-310. [DOI:10.1145/237218.237399]
27. [27] E. Baudrier, G. Millon, F. Nicolier, and S. Ruan, "A new similarity measure using Hausdorff distance map," in Image Processing, 2004. ICIP'04. 2004 International Conference on, 2004, pp. 669-672. [DOI:10.1109/ICIP.2004.1418843]
28. [28] X. Shu and X.-J. Wu, "A novel contour descriptor for 2D shape matching and its application to image retrieval," Image and vision Computing, vol. 29, pp. 286-294, 2011. [DOI:10.1016/j.imavis.2010.11.001]
29. [29] D. S. Fry, "Shape recognition using metrics on the space of shapes," 1993.
30. [30] H. Alt and M. Godau, "Computing the Fréchet distance between two polygonal curves," International Journal of Computational Geome-try & Applications, vol. 5, pp. 75-91, 1995. [DOI:10.1142/S0218195995000064]
31. [31] A. C. Jalba, M. H. Wilkinson, and J. B. Roerdink, "Shape representation and recognition through morphological curvature scale spaces," IEEE Transactions on Image Processing, vol. 15, pp. 331-341, 2006. [DOI:10.1109/TIP.2005.860606] [PMID]
32. [32] L. J. Latecki and R. Lakamper, "Shape similarity measure based on correspondence of visual parts," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1185-1190, 2000. [DOI:10.1109/34.879802]
33. [33] L. J. Latecki, R. Lakamper, and T. Eckhardt, "Shape descriptors for non-rigid shapes with a single closed contour," in Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, 2000, pp. 424-429. [DOI:10.1109/CVPR.2000.855850]
34. [34] E. Akagündüz, "Shape recognition using orientational and morphological scale-spaces of curvatures," IET Computer Vision, vol. 9, pp. 750-757, 2015. [DOI:10.1049/iet-cvi.2015.0012]
35. [35] T. B. Sebastian, P. N. Klein, and B. B. Kimia, "On aligning curves," IEEE transactions on pattern analysis and machine intelligence, vol. 25, pp. 116-125, 2003. [DOI:10.1109/TPAMI.2003.1159951]
36. [36] C. Grigorescu and N. Petkov, "Distance sets for shape filters and shape recognition," IEEE Transactions on Image Processing, vol. 12, pp. 1274-1286, 2003. [DOI:10.1109/TIP.2003.816010] [PMID]
37. [37] G. McNeill and S. Vijayakumar, "2D shape classification and retrieval," 2005.
38. [38] B. J. Super, "Learning chance probability functions for shape retrieval or classification," in Computer Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conference on, 2004, pp. 93-93. [DOI:10.1109/CVPR.2004.381]
39. [39] J. Xie, P.-A. Heng, and M. Shah, "Shape matching and modeling using skeletal context," Pattern Recognition, vol. 41, pp. 1756-1767, 2008. [DOI:10.1016/j.patcog.2007.11.005]
40. [40] Z. Tu and A. L. Yuille, "Shape matching and recognition–using generative models and informative features," in European Conference on Computer Vision, 2004, pp. 195-209. [DOI:10.1007/978-3-540-24672-5_16]
41. [41] B. J. Super, "Retrieval from shape databases using chance probability functions and fixed correspondence," International Journal of Pattern Recognition and Artificial Intelligence, vol. 20, pp. 1117-1137, 2006. [DOI:10.1142/S0218001406005174]
42. [42] E. Attalla and P. Siy, "Robust shape similarity retrieval based on contour segmentation polygo-nal multiresolution and elastic matching," Pattern Recognition, vol. 38, pp. 2229-2241, 2005. [DOI:10.1016/j.patcog.2005.02.009]
43. [43] T. Adamek and N. E. O'Connor, "A multiscale representation method for nonrigid shapes with a single closed contour," IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 742-753, 2004. [DOI:10.1109/TCSVT.2004.826776]
44. [44] B. Wang and Y. Gao, "Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval," IEEE Transactions on Image Processing, vol. 23, pp. 4101-4111, 2014. [DOI:10.1109/TIP.2014.2343457] [PMID]
45. [45] C. Xu, J. Liu, and X. Tang, "2D shape matching by contour flexibility," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 180-186, 2009. [DOI:10.1109/TPAMI.2008.199] [PMID]
46. [46] D. Sharvit, J. Chan, H. Tek, and B. B. Kimia, "Symmetry-based indexing of image databases," in Content-Based Access of Image and Video Libraries, 1998. Proceedings. IEEE Workshop on, pp. 56-62, 1998. https://doi.org/10.1006/jvci.1998.0396 [DOI:10.1109/IVL.1998.694496]
47. [47] X. Bai and L. J. Latecki, "Path similarity skeleton graph matching," IEEE transactions on pattern analysis and machine intelligence, vol. 30, pp. 1282-1292, 2008. [DOI:10.1109/TPAMI.2007.70769] [PMID]
48. [48] N. Payet and S. Todorovic, "Matching hierar-chies of deformable shapes," in Internat-ional Workshop on Graph-Based Representations in Pattern Recognition, 2009, pp. 1-10. [DOI:10.1007/978-3-642-02124-4_1]
49. [49] M. R. Daliri and V. Torre, "Robust symbolic representation for shape recognition and retrieval," Pattern Recognition, vol. 41, pp. 1782-1798, 2008. [DOI:10.1016/j.patcog.2007.10.020]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.