1. Blanco-Justicia A, Domingo-Ferrer J et al. "Achieving security and privacy in federated learning systems: Survey, research challenges and future directions," Engineering Applications of Artificial Intelligence, Vol. 106, pp. 1-14, 104468, November 2021. [
DOI:10.1016/j.engappai.2021.104468]
2. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. "Communication-efficient learning of deep networks from decentralized data." InArtificial intelligence and statistics, Vol. 54, pp. 1273-1282, April 2017.
3. Yang Q, Liu Y, Chen T, Tong Y. "Federated machine learning: Concept and applications." ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 10, pp. 1-19, January 2019. [
DOI:10.1145/3298981]
4. Li L, Fan Y, Tse M, Lin KY. "A review of applications in federated learning." Computers & Industrial Engineering, Vol. 149, November 2020. [
DOI:10.1016/j.cie.2020.106854]
5. Konečný J, McMahan HB, Ramage D, Richtárik P. "Federated optimization: Distributed machine learning for on-device intelligence." arXiv preprint arXiv:1610.02527. October 2016.
6. Dayarathna M, Bandara S, Jayamaha N, Herath M, Madhushan A, Jayasena S, Suzumura T. "An x10-based distributed streaming graph database engine." In2017 IEEE 24th International Conference on High Performance Computing (HiPC), pp. 243-252, December 2017. [
DOI:10.1109/HiPC.2017.00036]
7. Srinivas J, Reddy KV, Qyser AM. "Cloud computing basics." International journal of advanced research in computer and communication engineering. Vol. 1, pp. 343-347, July 2012.
8. Liu J, Huang J, Zhou Y, Li X, Ji S, Xiong H, Dou D. "From distributed machine learning to federated learning: A survey." Knowledge and Information Systems, Vol. 64, pp. 885-917, April 2022. [
DOI:10.1007/s10115-022-01664-x]
9. [Li T, Sahu AK, Talwalkar A, Smith V. "Federated learning: Challenges, methods, and future directions." IEEE signal processing magazine, Vol. 37, pp. 50-60, May 2020. [
DOI:10.1109/MSP.2020.2975749]
10. Yang A, Ma Z, Zhang C, Han Y, Hu Z, Zhang W, Huang X, Wu Y. "Review on application progress of federated learning model and security hazard protection." Digital Communications and Networks, Vol. 9, pp. 146-158, February 2023. [
DOI:10.1016/j.dcan.2022.11.006]
11. Wang G. "Interpret federated learning with shapley values." arXiv preprint arXiv:1905.04519. May 2019.
12. Zheng Z, Zhou Y, Sun Y, Wang Z, Liu B, Li K. "Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges." Connection Science, Vol. 34, pp. 1-28, December 2022. [
DOI:10.1080/09540091.2021.1936455]
13. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles Z, Cormode G, Cummings R, D'Oliveira RG. "Advances and open problems in federated learning." Foundations and trends® in machine learning, Vol. 14, pp. 1-210, June 2021. [
DOI:10.1561/2200000083]
14. Smith V, Chiang CK, Sanjabi M, Talwalkar AS. "Federated multi-task learning." Advances in neural information processing systems (NIPS), Vol. 30, December 2017.
15. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al., editors. "Practical secure aggregation for privacy-preserving machine learning." proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175-1191, November 2017. [
DOI:10.1145/3133956.3133982]
16. Chen Y, Luo F, Li T, Xiang T, Liu Z, Li J. "A training-integrity privacy-preserving federated learning scheme with trusted execution environment." Information Sciences, Vol. 522, pp. 69-79, June 2020. [
DOI:10.1016/j.ins.2020.02.037]
17. Sarikaya Y, Ercetin O. "Motivating workers in federated learning: A stackelberg game perspective." IEEE Networking Letters, Vol. 2, pp.23-27, October 2019. [
DOI:10.1109/LNET.2019.2947144]
18. Khan LU, Pandey SR, Tran NH, Saad W, Han Z, Nguyen MN, et al. "Federated learning for edge networks: Resource optimization and incentive mechanism." IEEE Communications Magazine, Vol. 58, pp. 88-93. October 2020. [
DOI:10.1109/MCOM.001.1900649]
19. Pandey SR, Tran NH, Bennis M, Tun YK, Manzoor A, Hong CS. "A crowdsourcing framework for on-device federated learning." IEEE Transactions on Wireless Communications, Vol. 19, pp. 3241-3256, February 2020. [
DOI:10.1109/TWC.2020.2971981]
20. Shokri R, Shmatikov V. "Privacy-preserving deep learning." InProceedings of the 22nd ACM SIGSAC conference on computer and communications security, pp. 1310-1321, October 2015. [
DOI:10.1145/2810103.2813687]
21. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. "Federated learning: Strategies for improving communication efficiency." arXiv preprint arXiv:161005492. October 2017.
22. Konečný J, McMahan HB, Ramage D, Richtárik P. "Federated optimization: Distributed machine learning for on-device intelligence." arXiv preprint arXiv:1610.02527. October 2016.
23. Khalooei M, Homayounpour M M, Amirmazlaghani M. "A survey on vulnerability of deep neural networks to adversarial examples and defense approaches to deal with them." Signal and Data Processing, Vol. 20 Issue 2 pp. 113-144, DOI: 10.61186/jsdp.20.2.113, September 2023. [
DOI:10.61186/jsdp.20.2.113]
24. Mohammadi S, Khalatbary A, Babagoli M. "Propose a meta-heuristic model of intrusion detection using feature selection based on improved gray wolf optimization and random forest." Signal and Data Processing, Vol. 20 Issue 1, pp.133-144, DOI: 10.61186/jsdp.20.1.133, June 2023. [
DOI:10.61186/jsdp.20.1.133]
25. McMahan, H.B., Ramage, D. "Federated learning: Collaborative machine learning without centralized training data." Google AI Blog , April 2017, https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.
26. Cai H, Venkatasubramanian KK. "Detecting data manipulation attacks on physiological sensor measurements in wearable medical systems." EURASIP Journal on Information Security, Vol. 2018, pp. 1-21. September2018. [
DOI:10.1186/s13635-018-0082-y]
27. Blanchard P, El Mhamdi EM, Guerraoui R, Stainer J. "Machine learning with adversaries: Byzantine tolerant gradient descent." Advances in neural information processing systems, Vol. 30, 2017.
28. Chen Y, Su L, Xu J. "Distributed statistical machine learning in adversarial settings: Byzantine gradient descent." InAbstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems, Vol. 46, pp. 96, June 2018. [
DOI:10.1145/3219617.3219655]
29. Yin D, Chen Y, Kannan R, Bartlett P. "Byzantine-robust distributed learning: Towards optimal statistical rates." Proceedings of the 35th International conference on machine learning, Vol. 80, pp. 5650-5659, July 2018.
30. Guerraoui R, Rouault S. "The hidden vulnerability of distributed learning in byzantium". Proceedings of the 35th International Conference on Machine Learning, Vol. 80, pp. 3521-3530, July 2018.
31. Xie C, Koyejo S, Gupta I. Zeno: "Distributed stochastic gradient descent with suspicion-based fault-tolerance." Proceedings of the 36th International Conference on Machine Learning , Vol. 97, pp. 6893-6901, May 2019.
32. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems, Vol. 2, pp. 429-450, March 2020.
33. Muñoz-González L, Co KT, Lupu EC. "Byzantine-robust federated machine learning through adaptive model averaging." arXiv preprint arXiv:1909.05125, September 2019.
34. Tahanian E, Amouei M, Fateh H, Rezvani M. A "game-theoretic approach for robust federated learning." International Journal of Engineering, Vol. 34 Issue 4, pp.832-842, April 2021.
35. Rezaei M, Rezvani M, Zahedi M. "Automatic Configuration of Federated Learning Client in Graph Classification using Genetic Algorithms." Journal of AI and Data Mining, Vol. 12 Issue 1, pp. 115-126, January 2024.
36. Dong X, Yu Z, Cao W, Shi Y, Ma Q. "A survey on ensemble learning." Frontiers of Computer Science. Vol. 14, pp. 241-258, April 2020 . [
DOI:10.1007/s11704-019-8208-z]
37. Jiang D, Shan C, Zhang Z. "Federated learning algorithm based on knowledge distillation." In2020 International conference on artificial intelligence and computer engineering (ICAICE). pp. 163-167 October 2020. [
DOI:10.1109/ICAICE51518.2020.00038]
38. Zhou ZH. Ensemble methods: foundations and algorithms. CRC press; June 2012. [
DOI:10.1201/b12207]
39. Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. "A survey on distributed machine learning." Acm computing surveys (csur), Vol. 53 Issue 2 pp. 1-33, March 2020. [
DOI:10.1145/3377454]
40. Dehghani M, Yazdanparast Z. "From distributed machine to distributed deep learning: a comprehensive survey." Journal of Big Data. Vol. 10, pp. 158, October 2023. [
DOI:10.1186/s40537-023-00829-x]
41. Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. "Federated learning: synthesis lectures on artificial intelligence and machine learning." Vol.13, pp.1-207, December 2019. [
DOI:10.1007/978-3-031-01585-4]
42. Borylo P, Lason A, Rzasa J, Szymanski A, Jajszczyk A. "Energy-aware fog and cloud interplay supported by wide area software defined networking." In 2016 IEEE International Conference on Communications (ICC), pp. 1-7, May 2016. [
DOI:10.1109/ICC.2016.7511451]
43. Gao D, Ju C, Wei X, Liu Y, Chen T, Yang Q. "Hhhfl: Hierarchical heterogeneous horizontal federated learning for electroencephalography." arXiv preprint arXiv:1909.05784, September 2019.
44. Ju C, Gao D, Mane R, Tan B, Liu Y, Guan C. "Federated transfer learning for EEG signal classification." In2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC), pp. 3040-3045 , July 2020. [
DOI:10.1109/EMBC44109.2020.9175344] [
PMID]
45. Hu K, Liu R, Yu H. "Horizontal Federated Learning For Brain-Computer Interface." In Proceedings of the 5th Distributed Artificial Intelligence Conference (DAI'23), December 2023.
46. Zhang Z, Li P, Al Hammadi AY, Guo F, Damiani E, Yeun CY. "Reputation-based federated learning defense to mitigate threats in EEG signal classification." In2024 16th International Conference on Computer and Automation Engineering (ICCAE), pp. 173-180, March 2024. [
DOI:10.1109/ICCAE59995.2024.10569874]
47. Landau O, Puzis R, Nissim N. "Mind your mind: EEG-based brain-computer interfaces and their security in cyber space." ACM Computing Surveys (CSUR), Vol. 35, pp. 1-38, February 2020. [
DOI:10.1145/3372043]
48. Lee S, Lacy ME, Jankowich M, Correa A, Wu WC. "Association between obesity phenotypes of insulin resistance and risk of type 2 diabetes in African Americans: the Jackson heart study." Journal of clinical & translational endocrinology. Vol. 19, pp. 100210, March 2020. [
DOI:10.1016/j.jcte.2019.100210] [
PMID] [
]
49. Gascón A, Schoppmann P, Balle B, Raykova M, Doerner J, Zahur S, et al. "Privacy-Preserving Distributed Linear Regression on High-Dimensional Data." Proc Priv Enhancing Technol, pp. 345-364, June 2017. [
DOI:10.1515/popets-2017-0053]
50. Nock R, Hardy S, Henecka W, Ivey-Law H, Patrini G, Smith G, Thorne B. "Entity resolution and federated learning get a federated resolution." arXiv preprint arXiv:1803.04035, March 2018.
51. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Papadopoulos D, Yang Q. "Secureboost: A lossless federated learning framework." IEEE intelligent systems, Vol. 36 Issue 6, pp. 87-98, May 2021. [
DOI:10.1109/MIS.2021.3082561]
52. Pan SJ, Ni X, Sun JT, Yang Q, Chen Z. "Cross-domain sentiment classification via spectral feature alignment." InProceedings of the 19th international conference on World wide web, pp. 751-760, April 2010. [
DOI:10.1145/1772690.1772767] [
]
53. Liu Y, Kang Y, Xing C, Chen T, Yang Q. "A secure federated transfer learning framework." IEEE Intelligent Systems, Vol. 35, pp. 70-82, August 2020 . [
DOI:10.1109/MIS.2020.2988525]
54. Sharma S, Xing C, Liu Y, Kang Y, editors. "Secure and efficient federated transfer learning." 2019 IEEE International Conference on Big Data (Big Data), pp. 2569-2576, December 2019. [
DOI:10.1109/BigData47090.2019.9006280] [
PMID] [
]
55. Chen Y, Ning Y, Slawski M, Rangwala H. "Asynchronous online federated learning for edge devices with non-iid data." In 2020 IEEE International Conference on Big Data (Big Data), pp. 15-24, December 2020. [
DOI:10.1109/BigData50022.2020.9378161]
56. Chen Y, Sun X, Jin Y. "Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation." IEEE transactions on neural networks and learning systems, Vol. 31 Issue 10, pp. 4229-4238, December 2019. [
DOI:10.1109/TNNLS.2019.2953131] [
PMID]
57. Kitchenham B. Procedures for performing systematic reviews. Keele, UK, Keele University, pp. 1-26, July 2004.
58. Pham QV, Dev K, Maddikunta PK, Gadekallu TR, Huynh-The T. "Fusion of federated learning and industrial internet of things: a survey." arXiv preprint arXiv:2101.00798, January 2021.
59. Xia Q, Ye W, Tao Z, Wu J, Li Q. A "survey of federated learning for edge computing: Research problems and solutions." High-Confidence Computing, Vol. 1 Issue 1, June 2021. [
DOI:10.1016/j.hcc.2021.100008]
60. Lo SK, Lu Q, Wang C, Paik HY, Zhu L. "A systematic literature review on federated machine learning: From a software engineering perspective." ACM Computing Surveys (CSUR), Vol. 54 Issue 5, pp. 1-39, May 2021. [
DOI:10.1145/3450288]
61. Briggs C, Fan Z, Andras P. "A review of privacy-preserving federated learning for the Internet-of-Things." Federated Learning Systems: Towards Next-Generation AI, Vol. 965, pp. 21-50, June 2021. [
DOI:10.1007/978-3-030-70604-3_2]
62. Liu Y, Zhang L, Ge N, Li G. "A systematic literature review on federated learning: From a model quality perspective." arXiv preprint arXiv:2012.01973, December 2020.
63. Lyu L, Yu H, Yang Q. "Threats to federated learning: A survey." arXiv preprint arXiv:2003.02133. March 2020. [
DOI:10.1007/978-3-030-63076-8_1]
64. Lim WYB, Luong NC, Hoang DT, Jiao Y, Liang Y-C, Yang Q, et al. "Federated learning in mobile edge networks: A comprehensive survey." IEEE Communications Surveys & Tutorials, Vol. 22 Issue 3, pp. 2031-2063, April 2020. [
DOI:10.1109/COMST.2020.2986024]
65. Aledhari M, Razzak R, Parizi RM, Saeed F. "Federated learning: A survey on enabling technologies, protocols, and applications." IEEE Access, Vol. 8, pp. 140699-140725, July 2020. [
DOI:10.1109/ACCESS.2020.3013541] [
PMID] [
]
66. Li Q, Wen Z, Wu Z, Hu S, Wang N, Li Y, Liu X, He B. "A survey on federated learning systems: Vision, hype and reality for data privacy and protection." IEEE Transactions on Knowledge and Data Engineering, Vol. 35 Issue 4, pp. 3347-3366, November 2021. [
DOI:10.1109/TKDE.2021.3124599]
67. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G. "A survey on security and privacy of federated learning." Future Generation Computer Systems, Vol. 115, pp. 619-640 February 2021. [
DOI:10.1016/j.future.2020.10.007]
68. Zhu H, Zhang H, Jin Y. "From federated learning to federated neural architecture search: a survey." Complex & Intelligent Systems, Vol. 7, pp. 639-657, April 2021. [
DOI:10.1007/s40747-020-00247-z]
69. Kulkarni V, Kulkarni M, Pant A. "Survey of personalization techniques for federated learning." 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), March 2020. [
DOI:10.1109/WorldS450073.2020.9210355]
70. Jin Y, Wei X, Liu Y, Yang Q. "Towards utilizing unlabeled data in federated learning: A survey and prospective." arXiv preprint arXiv:2002.11545, February 2020.
71. Nguyen DC, Ding M, Pathirana PN, Seneviratne A, Li J, Poor HV. "Federated learning for internet of things: A comprehensive survey." IEEE Communications Surveys & Tutorials, Vol. 23 Issue 3, pp.1622-1658, April 2021. [
DOI:10.1109/COMST.2021.3075439]
72. Du Z, Wu C, Yoshinaga T, Yau KL, Ji Y, Li J. "Federated learning for vehicular internet of things: Recent advances and open issues." IEEE Open Journal of the Computer Society, Vol. 1, pp. 45-61, May 2020. [
DOI:10.1109/OJCS.2020.2992630] [
PMID]
73. Mammen PM. "Federated learning: Opportunities and challenges." arXiv preprint arXiv:2101.05428, January 2021.
74. Liu J, Huang J, Zhou Y, Li X, Ji S, Xiong H, Dou D. "From distributed machine learning to federated learning: A survey." Knowledge and Information Systems. Vol. 64, pp. 885-917, April 2022 . [
DOI:10.1007/s10115-022-01664-x]
75. Jiang JC, Kantarci B, Oktug S, Soyata T. "Federated learning in smart city sensing: Challenges and opportunities." Sensors, Vol. 20 Issue 21, October 2020. [
DOI:10.3390/s20216230] [
PMID] [
]
76. Ji S, Tan Y, Saravirta T, Yang Z, Liu Y, Vasankari L, Pan S, Long G, Walid A. "Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning." arXiv preprint arXiv:2102.12920, February 2021. latest version: Ji S, Tan Y, Saravirta T, Yang Z, Liu Y, Vasankari L, Pan S, Long G, Walid A. "Emerging trends in federated learning: From model fusion to federated x learning." International Journal of Machine Learning and Cybernetics, Vol. 15, pp. 3769-3790, March 2024. [
DOI:10.1007/s13042-024-02119-1]
77. Yang Q, Fan L, Yu H, editors. "Federated learning: Privacy and incentive." Springer Nature, Vol. 12500, November 2020. [
DOI:10.1007/978-3-030-63076-8]
78. Park J, Samarakoon S, Elgabli A, Kim J, Bennis M, Kim SL, Debbah M. "Communication-efficient and distributed learning over wireless networks: Principles and applications." arXiv preprint arXiv:2008.02608, August 2020. [
DOI:10.1109/JPROC.2021.3055679]
79. Li Z, Sharma V, Mohanty SP. "Preserving data privacy via federated learning: Challenges and solutions." IEEE Consumer Electronics Magazine, Vol. 9 Issue 3, pp.8-16, May 2020. [
DOI:10.1109/MCE.2019.2959108]
80. Zhao Z, Feng C, Yang HH, Luo X. "Federated-learning-enabled intelligent fog radio access networks: Fundamental theory, key techniques, and future trends." IEEE wireless communications, Vol. 27 Issue 2, pp.22-28, April 2020. [
DOI:10.1109/MWC.001.1900370]
81. Niknam S, Dhillon HS, Reed JH. "Federated learning for wireless communications: Motivation, opportunities, and challenges." IEEE Communications Magazine, Vol. 58 Issue 6, pp.46-51, June 2020. [
DOI:10.1109/MCOM.001.1900461]
82. Liu Y, Yuan X, Xiong Z, Kang J, Wang X, Niyato D. "Federated learning for 6G communications: Challenges, methods, and future directions." China Communications, Vol. 17 Issue 9, pp.105-118, September 2020. [
DOI:10.23919/JCC.2020.09.009]
83. Briggs C, Fan Z, Andras P. "A review of privacy preserving federated learning for private IoT analytics." arXiv preprint arXiv:2004.11794, April 2020. [
DOI:10.1007/978-3-030-70604-3_2]
84. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. "Federated learning for healthcare informatics." Journal of healthcare informatics research, Vol. 5, pp.1-19, March 2021. [
DOI:10.1007/s41666-020-00082-4] [
PMID] [
]
85. Brik B, Ksentini A, Bouaziz M. "Federated learning for UAVs-enabled wireless networks: Use cases, challenges, and open problems." IEEE Access, Vol. 8, pp. 53841-53849, March 2020. [
DOI:10.1109/ACCESS.2020.2981430]
86. Wahab OA, Mourad A, Otrok H, Taleb T. "Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems." IEEE Communications Surveys & Tutorials, pp.1342-1397, Vol. 23 Issue 2, February 2021. [
DOI:10.1109/COMST.2021.3058573]
87. Banabilah S, Aloqaily M, Alsayed E, Malik N, Jararweh Y. "Federated learning review: Fundamentals, enabling technologies, and future applications." Information processing & management, Vol. 59 Issue 6, November 2022. [
DOI:10.1016/j.ipm.2022.103061]
88. Liu J, Huang J, Zhou Y, Li X, Ji S, Xiong H, Dou D. "From distributed machine learning to federated learning: A survey." Knowledge and Information Systems. Vol. 64, pp. 885-917, April 2022. [
DOI:10.1007/s10115-022-01664-x]
89. Dasaradharami Reddy K, Gadekallu TR. "A comprehensive survey on federated learning techniques for healthcare informatics." Computational Intelligence and Neuroscience. Vol. 2023 Issue 1, March 2023. [
DOI:10.1155/2023/8393990] [
PMID] [
]
90. Li H, Li C, Wang J, Yang A, Ma Z, Zhang Z, Hua D. "Review on security of federated learning and its application in healthcare." Future Generation Computer Systems, Vol. 144, pp. 271-290, July 2023. [
DOI:10.1016/j.future.2023.02.021]
91. Joung J. "Machine learning-based antenna selection in wireless communications." IEEE Communications Letters, Vol. 20 Issue 11, pp. 2241-2244, July 2016. [
DOI:10.1109/LCOMM.2016.2594776]
92. Li H, Ota K, Dong M. "Learning IoT in edge: Deep learning for the Internet of Things with edge computing." IEEE network, Vol. 32 Issue 1, pp.96-101, January 2018. [
DOI:10.1109/MNET.2018.1700202]
93. Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang YC, Kim DI. "Applications of deep reinforcement learning in communications and networking: A survey." IEEE communications surveys & tutorials, Vol. 21 Issue 4, May 2019. [
DOI:10.1109/COMST.2019.2916583]
94. Pham QV, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang WJ, Ding Z. "A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art." IEEE access. pp.116974-117017, Vol. 8, June 2020. [
DOI:10.1109/ACCESS.2020.3001277]
95. Yang T, Andrew G, Eichner H, Sun H, Li W, Kong N, Ramage D, Beaufays F. "Applied federated learning: Improving google keyboard query suggestions." arXiv preprint arXiv:1812.02903. December 2018.
96. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Milchenko M, Xu W, Marcus D, Colen RR, Bakas S. "Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data." Scientific reports, Vol. 10, pp. 12598, July 2020 . [
DOI:10.1038/s41598-020-69250-1] [
PMID] [
]
97. Li L, Ota K, Dong M. "Deep learning for smart industry: Efficient manufacture inspection system with fog computing." IEEE Transactions on Industrial Informatics, Vol. 14 Issue 10, pp. 4665-4673, June 2018. [
DOI:10.1109/TII.2018.2842821]
98. Da Xu L, He W, Li S. "Internet of things in industries: A survey." IEEE Transactions on industrial informatics, Vol. 10 Issue 4, pp. 2233-2243, January 2014. [
DOI:10.1109/TII.2014.2300753]
99. Huang J, Kong L, Chen G, Wu MY, Liu X, Zeng P. "Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism." IEEE Transactions on Industrial Informatics, Vol. 15 Issue 6, pp. 3680-3689, March 2019. [
DOI:10.1109/TII.2019.2903342]
100. Kong L, Liu XY, Sheng H, Zeng P, Chen G. "Federated tensor mining for secure industrial internet of things." IEEE Transactions on Industrial Informatics, Vol. 16 Issue 3, pp. 2144-2153, August 2019. [
DOI:10.1109/TII.2019.2937876]
101. Arachchige PC, Bertok P, Khalil I, Liu D, Camtepe S, Atiquzzaman M. "A trustworthy privacy preserving framework for machine learning in industrial IoT systems." IEEE Transactions on Industrial Informatics, Vol. 16 Issue 9, pp. 6092-6102, February 2020. [
DOI:10.1109/TII.2020.2974555]
102. Kuang L, Yang LT, Feng J, Dong M. "Secure tensor decomposition using fully homomorphic encryption scheme." IEEE Transactions on Cloud Computing, Vol. 6 Issue 3, pp.868-878, December 2015. [
DOI:10.1109/TCC.2015.2511769]
103. Raja G, Manaswini Y, Vivekanandan GD, Sampath H, Dev K, Bashir AK. "AI-powered blockchain-a decentralized secure multiparty computation protocol for IoV." In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 865-870, July 2020. [
DOI:10.1109/INFOCOMWKSHPS50562.2020.9162866]
104. Huynh-The T, Hua CH, Pham QV, Kim DS. "MCNet: An efficient CNN architecture for robust automatic modulation classification." IEEE Communications Letters, Vol. 24 Issue 4, pp. 811-815, January 2020. [
DOI:10.1109/LCOMM.2020.2968030]
105. Deepa N, Pham QV, Nguyen DC, Bhattacharya S, Prabadevi B, Gadekallu TR, Maddikunta PK, Fang F, Pathirana PN. "A survey on blockchain for big data: Approaches, opportunities, and future directions." Future Generation Computer Systems,Vol. 131, pp. 209-226, June 2022. [
DOI:10.1016/j.future.2022.01.017]
106. Hakak S, Khan WZ, Gilkar GA, Assiri B, Alazab M, Bhattacharya S, Reddy GT. "Recent advances in blockchain technology: A survey on applications and challenges." International Journal of Ad Hoc and Ubiquitous Computing, Vol. 38, pp. 82-100, November 2021. [
DOI:10.1504/IJAHUC.2021.119089]
107. Wang YE, Wei GY, Brooks D. "Benchmarking TPU, GPU, and CPU platforms for deep learning." arXiv preprint arXiv:1907.10701, July 2019.
108. Cho HD, Engineer PD, Chung K, Kim T. "Benefits of the big." LITTLE Architecture, EETimes, February 2012.
109. Yin B, Yin H, Wu Y, Jiang Z. "FDC: A secure federated deep learning mechanism for data collaborations in the Internet of Things." IEEE Internet of Things Journal, Vol. 7 Issue 7, pp. 6348-6359, January 2020. [
DOI:10.1109/JIOT.2020.2966778]
110. Lu Y, Huang X, Dai Y, Maharjan S, Zhang Y. "Blockchain and federated learning for privacy-preserved data sharing in industrial IoT." IEEE Transactions on Industrial Informatics. Vol. 16 Issue 6, pp. 4177-4186, September 2019. [
DOI:10.1109/TII.2019.2942190]
111. Li Z, Liu J, Hao J, Wang H, Xian M. "CrowdSFL: A secure crowd computing framework based on blockchain and federated learning." Electronics. Vol. 9 Issue 5, May 2020. [
DOI:10.3390/electronics9050773]
112. Hua G, Zhu L, Wu J, Shen C, Zhou L, Lin Q. "Blockchain-based federated learning for intelligent control in heavy haul railway." IEEE Access, Vol. 8, pp. 176830-176839, September 2020. [
DOI:10.1109/ACCESS.2020.3021253]
113. Sharma PK, Park JH, Cho K. Blockchain and "federated learning-based distributed computing defence framework for sustainable society." Sustainable Cities and Society, Vol. 59, pp. 102220, August 2020. [
DOI:10.1016/j.scs.2020.102220]
114. Leroy D, Coucke A, Lavril T, Gisselbrecht T, Dureau J. "Federated learning for keyword spotting." InICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 6341-6345, May 2019. [
DOI:10.1109/ICASSP.2019.8683546]
115. Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, Eichner H, Kiddon C, Ramage D. "Federated learning for mobile keyboard prediction." arXiv preprint arXiv:1811.03604, November 2018.
116. Ramaswamy S, Mathews R, Rao K, Beaufays F. "Federated learning for emoji prediction in a mobile keyboard." arXiv preprint arXiv:1906.04329, June 2019.
117. Wang X, Han Y, Wang C, Zhao Q, Chen X, Chen M. "In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning." in IEEE Network, Vol. 33 Issue 5, pp. 156-165, July 2019. [
DOI:10.1109/MNET.2019.1800286]
118. Qian Y, Hu L, Chen J, Guan X, Hassan MM, Alelaiwi A. "Privacy-aware service placement for mobile edge computing via federated learning." Information Sciences, Vol. 505, pp. 562-570, December 2019. [
DOI:10.1016/j.ins.2019.07.069]
119. Feng J, Rong C, Sun F, Guo D, Li Y. "PMF: A privacy-preserving human mobility prediction framework via federated learning." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 4, pp. 1-21, March 2020. [
DOI:10.1145/3381006]
120. Sozinov K, Vlassov V, Girdzijauskas S. "Human activity recognition using federated learning." In2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1103-1111, December 2018. [
DOI:10.1109/BDCloud.2018.00164]
121. Aïvodji UM, Gambs S, Martin A. "IOTFLA: A secured and privacy-preserving smart home architecture implementing federated learning." In 2019 IEEE security and privacy workshops (SPW), pp. 175-180, May 2019. [
DOI:10.1109/SPW.2019.00041]
122. Yu T, Li T, Sun Y, Nanda S, Smith V, Sekar V, Seshan S. "Learning context-aware policies from multiple smart homes via federated multi-task learning." In2020 IEEE/ACM Fifth international conference on internet-of-things design and implementation (IoTDI), pp. 104-115, April 2020. [
DOI:10.1109/IoTDI49375.2020.00017]
123. Guo W, Kotsia I, Patras I. "Tensor learning for regression." IEEE Transactions on Image Processing, Vol. 21 Issue 2, pp. 816-827, August 2011. [
DOI:10.1109/TIP.2011.2165291] [
PMID]
124. Lai Z, Wong WK, Xu Y, Zhao C, Sun M. "Sparse alignment for robust tensor learning." IEEE transactions on neural networks and learning systems, Vol. 25 Issue 10, pp.1779-1792 January 2014. [
DOI:10.1109/TNNLS.2013.2295717] [
PMID]
125. Feng J, Yang LT, Liu X, Zhang R. "Privacy-preserving tensor analysis and processing models for wireless internet of things." IEEE Wireless Communications, Vol. 25 Issue 6, pp. 98-103, December 2018. [
DOI:10.1109/MWC.2017.1800097]
126. Zhang X, Chen X, Liu JK, Xiang Y. "DeepPAR and DeepDPA: privacy preserving and asynchronous deep learning for industrial IoT." IEEE Transactions on Industrial Informatics, Vol. 16 Issue 3, pp. 2081-2090, September 2019. [
DOI:10.1109/TII.2019.2941244]
127. Wang X, Wang C, Li X, Leung VC, Taleb T. "Federated deep reinforcement learning for Internet of Things with decentralized cooperative edge caching." IEEE Internet of Things Journal, Vol. 7 Issue 10, pp. 9441-9455, April 2020. [
DOI:10.1109/JIOT.2020.2986803]
128. Liu Y, James JQ, Kang J, Niyato D, Zhang S. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE Internet of Things Journal, Vol. 7 Issue 8, pp. 7751-7763, April 2020. [
DOI:10.1109/JIOT.2020.2991401]
129. Kim H, Park J, Bennis M, Kim SL. "Blockchained on-device federated learning." IEEE Communications Letters, Vol. 24 Issue 6, pp. 1279-1283, June 2019. [
DOI:10.1109/LCOMM.2019.2921755]
130. Qu Y, Gao L, Luan TH, Xiang Y, Yu S, Li B, Zheng G. "Decentralized privacy using blockchain-enabled federated learning in fog computing." IEEE Internet of Things Journal, Vol. 7 Issue 6, pp. 5171-5183, March 2020. [
DOI:10.1109/JIOT.2020.2977383]
131. Pokhrel SR, Choi J. "Federated learning with blockchain for autonomous vehicles: Analysis and design challenges." IEEE Transactions on Communications, Vol. 68 Issue 8, pp. 4734-4746, April 2020. [
DOI:10.1109/TCOMM.2020.2990686]
132. Fu JS, Liu Y, Chao HC, Bhargava BK, Zhang ZJ. "Secure data storage and searching for industrial IoT by integrating fog computing and cloud computing." IEEE Transactions on Industrial Informatics, Vol. 14 Issue 10, pp. 4519-4528, January 2018. [
DOI:10.1109/TII.2018.2793350]
133. Kaur K, Garg S, Aujla GS, Kumar N, Rodrigues JJ, Guizani M. "Edge computing in the industrial internet of things environment: Software-defined-networks-based edge-cloud interplay." IEEE communications magazine, Vol. 56 Issue 2, pp. 44-51, February 2018. [
DOI:10.1109/MCOM.2018.1700622]
134. Singh A, Garg S, Kaur K, Batra S, Kumar N, Choo KK. "Fuzzy-folded bloom filter-as-a-service for big data storage in the cloud." IEEE Transactions on Industrial Informatics, Vol. 15 Issue 4, pp. 2338-2348, June 2018. [
DOI:10.1109/TII.2018.2850053]
135. Saqlain M, Piao M, Shim Y, Lee JY. "Framework of an IoT-based industrial data management for smart manufacturing." Journal of Sensor and Actuator Networks, Vol. 8 Issue 2, April 2019. [
DOI:10.3390/jsan8020025]
136. Anton SD, Fraunholz D, Zemitis J, Pohl F, Schotten HD. "Highly scalable and flexible model for effective aggregation of context-based data in generic IIoT scenarios." arXiv preprint arXiv:1906.03064, May 2019.
137. Wan J, Tang S, Shu Z, Li D, Wang S, Imran M, Vasilakos AV. "Software-defined industrial internet of things in the context of industry 4.0." IEEE Sensors Journal, Vol. 16 Issue 20, pp.7373-7380, May 2016. [
DOI:10.1109/JSEN.2016.2565621]
138. Liu CH, Lin Q, Wen S. "Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning." IEEE Transactions on Industrial Informatics, Vol. 15 Issue 6, pp. 3516-3526, December 2018. [
DOI:10.1109/TII.2018.2890203]
139. Liu B, Wang L, Liu M, Xu CZ. "Federated imitation learning: A novel framework for cloud robotic systems with heterogeneous sensor data." IEEE Robotics and Automation Letters, Vol. 5 Issue 2, pp. 3509-3516, February 2020. [
DOI:10.1109/LRA.2020.2976321]
140. Zhu H, Jin Y. "Multi-objective evolutionary federated learning." IEEE transactions on neural networks and learning systems, Vol. 31 Issue 4, pp. 1310-1322, June 2019. [
DOI:10.1109/TNNLS.2019.2919699] [
PMID]
141. Kanagavelu R, Li Z, Samsudin J, Yang Y, Yang F, Goh RS, Cheah M, Wiwatphonthana P, Akkarajitsakul K, Wang S. "Two-phase multi-party computation enabled privacy-preserving federated learning." In2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 410-419, May 2020. [
DOI:10.1109/CCGrid49817.2020.00-52]
142. Hao M, Li H, Luo X, Xu G, Yang H, Liu S. "Efficient and privacy-enhanced federated learning for industrial artificial intelligence." IEEE Transactions on Industrial Informatics, Vol. 16 Issue 10, pp. 6532-6542, October 2019. [
DOI:10.1109/TII.2019.2945367]
143. Zhang K, Zhu Y, Maharjan S, Zhang Y. "Edge intelligence and blockchain empowered 5G beyond for the industrial Internet of Things." IEEE network, Vol. 33 Issue 5, pp. 12-19, October 2019. [
DOI:10.1109/MNET.001.1800526]
144. Qolomany B, Ahmad K, Al-Fuqaha A, Qadir J. "Particle swarm optimized federated learning for industrial IoT and smart city services." InGLOBECOM 2020-2020 IEEE Global Communications Conference, pp. 1-6, December 2020. [
DOI:10.1109/GLOBECOM42002.2020.9322464]
145. McMahan HB, Ramage D, Talwar K, Zhang L. "Learning differentially private recurrent language models." arXiv preprint arXiv:1710.06963, October 2017.
146. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L. "Deep learning with differential privacy." In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308-318, October 2016. [
DOI:10.1145/2976749.2978318]
147. G Geyer RC, Klein T, Nabi M. "Differentially private federated learning: A client level perspective." arXiv preprint arXiv:1712.07557. December 2017.
148. Hitaj B, Ateniese G, Perez-Cruz F. "Deep models under the GAN: information leakage from collaborative deep learning." In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp. 603-618, October 2017. [
DOI:10.1145/3133956.3134012]
149. Zhang X, Ji S, Wang H, Wang T. "Private, yet practical, multiparty deep learning." In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1442-1452, June 2017. [
DOI:10.1109/ICDCS.2017.215]
150. Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K. "Adaptive federated learning in resource constrained edge computing systems." IEEE journal on selected areas in communications, Vol. 37 Issue 6, pp. 1205-1221, March 2019. [
DOI:10.1109/JSAC.2019.2904348]
151. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konečnỳ J, Mazzocchi S, McMahan HB. "Towards federated learning at scale: System design." arXiv preprint arXiv:1902.01046. 2019.
152. Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, Willems S, Vandewinckele L, Holmström M, Löfman F, Michiels S. "Artificial intelligence and machine learning for medical imaging: A technology review." Physica Medica. Vol. 83, pp. 242-256, March 2021. [
DOI:10.1016/j.ejmp.2021.04.016] [
PMID] [
]
153. Guan H, Yap PT, Bozoki A, Liu M. "Federated learning for medical image analysis: A survey." Pattern Recognition, Vol. 151, March 2024. [
DOI:10.1016/j.patcog.2024.110424] [
PMID] [
]
154. Agrawal S, Chowdhuri A, Sarkar S, Selvanambi R, Gadekallu TR. "Temporal weighted averaging for asynchronous federated intrusion detection systems." Computational Intelligence and Neuroscience, Vol. 2021 Issue 1, December 2021. [
DOI:10.1155/2021/5844728] [
PMID] [
]
155. Szegedi G, Kiss P, Horváth T. "Evolutionary Federated Learning on EEG-data." In ITAT, pp. 71-78, September 2019.
156. Van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Heymann D, Burke DS. "A systematic review of barriers to data sharing in public health." BMC public health, Vol. 14, pp. 1-9, December 2014. [
DOI:10.1186/1471-2458-14-1144] [
PMID] [
]
157. Glicksberg BS, Johnson KW, Dudley JT. "The next generation of precision medicine: observational studies, electronic health records, biobanks and continuous monitoring." Human molecular genetics, Vol. 27 Issue R1, pp. R56-R62, May 2018. [
DOI:10.1093/hmg/ddy114] [
PMID]
158. Gostin LO. "National health information privacy: regulations under the Health Insurance Portability and Accountability Act." Jama, Vol. 285, pp. 3015-3021, June 2001. [
DOI:10.1001/jama.285.23.3015] [
PMID]
159. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. "Deep learning for healthcare: review, opportunities and challenges." Briefings in bioinformatics, Vol. 19 Issue 6, pp.1236-1246, November 2018. [
DOI:10.1093/bib/bbx044] [
PMID] [
]
160. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S. "The future of digital health with federated learning." NPJ digital medicine, Vol. 3, pp. 1-7, September 2020. [
DOI:10.1038/s41746-020-00323-1] [
PMID] [
]
161. LeCun Y, Bengio Y, Hinton G. "Deep learning." Nature, Vol. 521, pp. 436-444, May 2015. [
DOI:10.1038/nature14539] [
PMID]
162. Lee J, Sun J, Wang F, Wang S, Jun CH, Jiang X. "Privacy-preserving patient similarity learning in a federated environment: development and analysis." JMIR medical informatics, Vol. 6, April 2018. [
DOI:10.2196/medinform.7744] [
PMID] [
]
163. Liu D, Dligach D, Miller T. "Two-stage federated phenotyping and patient representation learning." In Proceedings of the conference. Association for Computational Linguistics, Meeting, Vol. 2019, pp. 283-291, August 2019. [
DOI:10.18653/v1/W19-5030]
164. Kim Y, Sun J, Yu H, Jiang X. "Federated tensor factorization for computational phenotyping." In Proceedings of the 23rd ACM SIGKDD International conference on knowledge discovery and data mining, pp. 887-895, August 2017. [
DOI:10.1145/3097983.3098118]
165. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. "Federated learning of predictive models from federated electronic health records." International journal of medical informatics, Vol. 112, pp. 59-67, April 2018. [
DOI:10.1016/j.ijmedinf.2018.01.007] [
PMID] [
]
166. Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. "Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records." Journal of biomedical informatics, Vol. 99, November 2019. [
DOI:10.1016/j.jbi.2019.103291] [
PMID]
167. Sharma P, Shamout FE, Clifton DA. "Preserving patient privacy while training a predictive model of in-hospital mortality." arXiv preprint arXiv:1912.00354, December 2019.
168. Boughorbel S, Jarray F, Venugopal N, Moosa S, Elhadi H, Makhlouf M. "Federated uncertainty-aware learning for distributed hospital ehr data." arXiv preprint arXiv:1910.12191, October 2019.
169. Silva S, Gutman BA, Romero E, Thompson PM, Altmann A, Lorenzi M. "Federated learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data." In 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), pp. 270-274, April 2019. [
DOI:10.1109/ISBI.2019.8759317]
170. Pfohl SR, Dai AM, Heller K. "Federated and differentially private learning for electronic health records." arXiv preprint arXiv:1911.05861. November 2019.
171. Lee JS, Darcy KM, Hu H, Casablanca Y, Conrads TP, Dalgard CL, Freymann JB, Hanlon SE, Huang GD, Kvecher L, Maxwell GL. "From discovery to practice and survivorship: building a national real‐world data learning healthcare framework for military and veteran cancer patients." Clinical Pharmacology & Therapeutics, Vol. 106, pp. 52-57, July 2019. [
DOI:10.1002/cpt.1425] [
PMID] [
]
172. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG. "MIMIC-III, a freely accessible critical care database." Scientific data, Vol. 3, pp. 1-9, May 2016. [
DOI:10.1038/sdata.2016.35] [
PMID] [
]
173. Xu J, Xu Z, Walker P, Wang F. "Federated patient hashing." InProceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 6486-6493, April 2020. [
DOI:10.1609/aaai.v34i04.6121]
174. Pollard TJ, Johnson AE, Raffa JD, Celi LA, Mark RG, Badawi O. "The eICU Collaborative Research Database, a freely available multi-center database for critical care research." Scientific data, Vol. 5, pp. 1-13, September 2018. [
DOI:10.1038/sdata.2018.178] [
PMID] [
]
175. Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, Somani S, Paranjpe I, De Freitas JK, Wanyan T, Johnson KW. "Federated learning of electronic health records improves mortality prediction in patients hospitalized with COVID-19." MedRxiv. August 2020. [
DOI:10.1101/2020.08.11.20172809]
176. Chen Y, Qin X, Wang J, Yu C, Gao W. "Fedhealth: A federated transfer learning framework for wearable healthcare." IEEE Intelligent Systems, Vol. 35 Issue 4, pp. 83-93, April 2020. [
DOI:10.1109/MIS.2020.2988604]
177. Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, Das A. "Differential privacy-enabled federated learning for sensitive health data." arXiv preprint arXiv:1910.02578. October 2019.
178. Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I. "Predicting adverse drug reactions on distributed health data using federated learning." In AMIA Annual symposium proceedings, Vol. 2019, pp. 313-322, 2019(Published online March 2020).
179. Yuan B, Ge S, Xing W. "A federated learning framework for healthcare iot devices." arXiv preprint arXiv:2005.05083, May 2020.
180. Clifford GD, Silva I, Moody B, Li Q, Kella D, Shahin A, Kooistra T, Perry D, Mark RG. "The PhysioNet/computing in cardiology challenge 2015: reducing false arrhythmia alarms in the ICU." In 2015 Computing in Cardiology Conference (CinC), pp. 273-276, September 2015. [
DOI:10.1109/CIC.2015.7408639] [
PMID] [
]
181. Detrano R, Janosi A, Steinbrunn W, Pfisterer M, Schmid JJ, Sandhu S, Guppy KH, Lee S, Froelicher V. "International application of a new probability algorithm for the diagnosis of coronary artery disease." The American journal of cardiology, Vol. 64 Issue 5, pp.304-310, August 1989. [
DOI:10.1016/0002-9149(89)90524-9] [
PMID]
182. Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS. "Using the ADAP learning algorithm to forecast the onset of diabetes mellitus." InProceedings of the annual symposium on computer application in medical care, American Medical Informatics Association, pp. 261-265, November 1988.
183. Li S, Cheng Y, Liu Y, Wang W, Chen T. "Abnormal client behavior detection in federated learning." arXiv preprint arXiv:1910.09933. October 2019.
184. Huang L, Yin Y, Fu Z, Zhang S, Deng H, Liu D. "LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data." Plos one, Vol. 15, April 2020. [
DOI:10.1371/journal.pone.0230706] [
PMID] [
]
185. Fallahpour A, Barri K, Wong KY, Jiao P, Alavi AH. "An integrated data mining approach to predict electrical energy consumption." International Journal of Bio-Inspired Computation, Vol. 17, pp. 142-153, April 2021. [
DOI:10.1504/IJBIC.2021.114876]
186. Cai X, Cao Y, Ren Y, Cui Z, Zhang W. "Multi-objective evolutionary 3D face reconstruction based on improved encoder-decoder network." Information Sciences, Vol. 581, pp. 233-248, December 2021. [
DOI:10.1016/j.ins.2021.09.024]
187. Zhang Z, Cao Y, Cui Z, Zhang W, Chen J. "A many-objective optimization based intelligent intrusion detection algorithm for enhancing security of vehicular networks in 6G." IEEE Transactions on Vehicular Technology, Vol. 70 Issue 6, pp. 5234-5243, February 2021. [
DOI:10.1109/TVT.2021.3057074]
188. Ko I, Chambers D, Barrett E. "Recurrent autonomous autoencoder for intelligent DDoS attack mitigation within the ISP domain." International journal of machine learning and cybernetics, Vol. 12, pp. 3145-3167, November 2021. [
DOI:10.1007/s13042-021-01306-8] [
PMID] [
]
189. Al-Hazaimeh OM, Al-Jamal MF, Alomari AK, Bawaneh MJ, Tahat N. "Image encryption using anti-synchronisation and Bogdanov transformation map." International Journal of Computing Science and Mathematics, Vol. 15, pp.43-59, April 2022. [
DOI:10.1504/IJCSM.2022.122144]
190. Qin Z, Li GY, Ye H. "Federated learning and wireless communications." IEEE Wireless Communications, Vol. 28 Issue 5, pp. 134-140, September 2021. [
DOI:10.1109/MWC.011.2000501]
191. Yang M, Qian H, Wang X, Zhou Y, Zhu H. "Client selection for federated learning with label noise." IEEE Transactions on Vehicular Technology, Vol. 71 Issue 2, pp. 2193-2197, December 2021. [
DOI:10.1109/TVT.2021.3131852]
192. Peng W, Lin J, Ma X. "A bi-objective optimisation approach for the critical chain project scheduling problem." International Journal of Computing Science and Mathematics, Vol. 13, pp. 311-330, September 2021. [
DOI:10.1504/IJCSM.2021.117596]
193. Wang L, Pan Z, Wang J. "A review of reinforcement learning based intelligent optimization for manufacturing scheduling." Complex System Modeling and Simulation, Vol. 1 Issue 4, pp. 257-270, December 2021. [
DOI:10.23919/CSMS.2021.0027]
194. Wu X, Cao Z, Wu S. "Real-time hybrid flow shop scheduling approach in smart manufacturing environment." Complex System Modeling and Simulation, Vol. 1 Issue 4, pp. 335-350, December 2021. [
DOI:10.23919/CSMS.2021.0024]
195. Cai X, Wang P, Cui Z, Zhang W, Chen J. "Weight convergence analysis of DV-hop localization algorithm with GA." Soft Computing, Vol. 24, pp. 18249-18258, December 2020. [
DOI:10.1007/s00500-020-05088-z] [
PMID] [
]
196. Bai H, Fan T, Niu Y, Cui Z. "Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm." Complex System Modeling and Simulation, Vol. 2 Issue 2, pp. 130-141, June 2022. [
DOI:10.23919/CSMS.2022.0006]
197. Lv D. "Scale parameter recognition of blurred moving image based on edge combination algorithm." International Journal of Computing Science and Mathematics, Vol. 15, pp. 168-182, June 2022. [
DOI:10.1504/IJCSM.2022.124002]
198. Swain D, Bijawe SS, Akolkar PP, Shinde A, Mahajani MV. "Diabetic retinopathy using image processing and deep learning." International Journal of Computing Science and Mathematics, Vol. 14, pp.397-409, 2021. [
DOI:10.1504/IJCSM.2021.120686]
199. Cai X, Zhang J, Ning Z, Cui Z, Chen J. "A many-objective multistage optimization-based fuzzy decision-making model for coal production prediction." IEEE Transactions on Fuzzy Systems, Vol. 29 Issue 12, pp.3665-3675, June 2021. [
DOI:10.1109/TFUZZ.2021.3089230]
200. Chen S, Zhang J, Bai Y, Xu P, Gao T, Jiang H, Gao W, Li X. "Blockchain Enabled Intelligence of Federated Systems (BELIEFS): An attack-tolerant trustable distributed intelligence paradigm." Energy Reports, Vol. 7, pp. 8900-8911, November 2021. [
DOI:10.1016/j.egyr.2021.10.113]
201. Cui Z, Zhang J, Wu D, Cai X, Wang H, Zhang W, Chen J. "Hybrid many-objective particle swarm optimization algorithm for green coal production problem." Information Sciences, Vol. 518, pp. 256-271, May 2020. [
DOI:10.1016/j.ins.2020.01.018]